【題目】已知拋物線),焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).

()若點(diǎn)焦點(diǎn)重合,且弦長(zhǎng),求直線的方程;

()若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.

【答案】() .()

【解析】

試題分析:)確定拋物線的方程,設(shè)出直線方程與拋物線方程聯(lián)立,利用弦長(zhǎng)|PQ|=2,即可求直線l的方程;()設(shè)出直線方程與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合向量知識(shí),證明B(-,0),確定出,或m的范圍,表示出點(diǎn)B到直線l的距離d,即可求得取值范圍

試題解析:()解:由題意可知,,故拋物線方程為,焦點(diǎn).

設(shè)直線l的方程為,,.

消去x,得.所以=n2+1>0,.

因?yàn)?/span>,點(diǎn)A與焦點(diǎn)F重合,

所以.

所以n2=1,即n=±1.所以直線l的方程為,

.

()證明:設(shè)直線l的方程為(m0),,

消去x,得,

因?yàn)?/span>,所以=m2+4x0>0,y1+y2=m,y1y2=-x0.

設(shè)B(xB,0),則.

由題意知,,所以,

.

顯然,所以,即證B(-x0,0).

由題意知,MBQ為等腰直角三角形,所以,即,也即,

所以,所以,

,所以>0,即

又因?yàn)?/span>,所以.,

所以d的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,定點(diǎn), 是圓上的一動(dòng)點(diǎn),線段的垂直平分線交半徑點(diǎn).

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)四邊形的四個(gè)頂點(diǎn)都在曲線上,且對(duì)角線, 過原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)關(guān)系用下圖的兩條線段表示;該商品在30天內(nèi)日銷售量Q(件)與時(shí)間t(天)之間的關(guān)系Q=﹣t+40.

(1)根據(jù)提供的圖象,寫出該商品每件的銷售價(jià)格P與時(shí)間t的函數(shù)關(guān)系式;
(2)問這30天內(nèi),哪天的銷售額最大,最大是多少?(銷售額=銷售價(jià)格×銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連擲一枚均勻的骰子兩次,所得向上的點(diǎn)數(shù)分別為,記,則下列說法正確的是( )

A. 事件的概率為 B. 事件是奇數(shù)互為對(duì)立事件

C. 事件互為互斥事件 D. 事件的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若一系列函數(shù)的解析式和值域相同,但是定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2 , x∈[1,2],與函數(shù)y=x2 , x∈[﹣2,﹣1]即為“同族函數(shù)”.下面的函數(shù)解析式也能夠被用來構(gòu)造“同族函數(shù)”的是(
A.y=x
B.y=|x﹣3|
C.y=2x
D.y=log

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗(yàn)公式P=3 ,Q=t.今將3萬元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲種商品投資x(萬元).求:
(1)經(jīng)營(yíng)甲、乙兩種商品的總利潤(rùn)y(萬元)關(guān)于x的函數(shù)表達(dá)式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤(rùn)y達(dá)到最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|(x﹣a)[x﹣(a+3)]≤0}(a∈R),B={x|x2﹣4x﹣5>0}.
(1)若A∩B=,求實(shí)數(shù)a的取值范圍;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,正確的個(gè)數(shù)是(
={0};②{0};③∈{0};④0={0};⑤0∈{0};⑥{1}∈{1,2,3};⑦{1,2}{1,2,3};⑧{a,b}={b,a}.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查

求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;

若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析

(1)列出所有可能的抽取結(jié)果;

(2)求抽取的2所學(xué)校均為小學(xué)的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案