【題目】某校高三文科分為五個班.高三數(shù)學測試后,隨機地在各班抽取部分學生進行成績統(tǒng)計,各班被抽取的學生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了18人.抽取出來的所有學生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖所示,其中120~130(包括120分但不包括130分)的頻率為0.05,此分數(shù)段的人數(shù)為5人.
(1)問各班被抽取的學生人數(shù)各為多少人?
(2)在抽取的所有學生中,任取一名學生,求分數(shù)不小于90分的概率.

【答案】解:(1)由頻率分布條形圖知,抽取的學生總數(shù)為人.
∵各班被抽取的學生人數(shù)成等差數(shù)列,
設其公差為d,由5×18+10d=100,
解得d=1.
∴各班被抽取的學生人數(shù)分別是18人,19人,20人,21人,22人.
(2)在抽取的學生中,任取一名學生,則分數(shù)不小于90分的概率為0.35+0.25+0.1+0.05=0.75.
【解析】(1)讀圖可知抽取的人數(shù),根據(jù)各班被抽取的學生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了18人,設出這個數(shù)列的公差,根據(jù)數(shù)列的和是100,求出公差,算出各班的人數(shù).
(2)由題意知,這個學生在那一段是互斥事件,根據(jù)直方圖給出的各個分數(shù)段的概率,利用互斥事件的概率做出事件的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】揚州市2016—2017學年度第一學期期末檢測(本小題滿分16分)

如圖,橢圓,圓,過橢圓的上頂點的直線:分別交圓、橢圓于不同的兩點、

(1)若點求橢圓的方程;

(2)若,求橢圓的離心率的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
A.y=x3 , x∈R
B.y=sinx,x∈R
C.y=﹣x,x∈R
D.y=( x , x∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2﹣(a+1)x+1.
(1)若不等式f(x)<mx的解集為{x|1<x<2},求實數(shù)a、m的值;
(2)解不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017湖南婁底二!如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從高三學生中抽取50名同學參加數(shù)學競賽,成績的分組及各組的頻數(shù)如下(單位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.
(1)列出樣本的頻率分布表;
(2)畫出頻率分布直方圖和頻率分布折線圖;
(3)估計成績在[60,90)分的學生比例;
(4)估計成績在85分以下的學生比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,左頂點為A,左焦點為F1(﹣2,0),點B(2, )在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點,直線AE,AF分別與y軸交于點M,N
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點P,使得無論非零實數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃在今年內(nèi)同時出售變頻空調(diào)機和智能洗衣機,由于這兩種產(chǎn)品的市場需求量非常大,有多少就能銷售多少,因此該公司要根據(jù)實際情況(如資金、勞動力)確定產(chǎn)品的月供應量,以使得總利潤達到最大.已知對這兩種產(chǎn)品有直接限制的因素是資金和勞動力,通過調(diào)查,得到關于這兩種產(chǎn)品的有關數(shù)據(jù)如表:
試問:怎樣確定兩種貨物的月供應量,才能使總利潤達到最大,最大利潤是多少?

資金

單位產(chǎn)品所需資金(百元)

空調(diào)機

洗衣機

月資金供應量(百元)

成本

30

20

300

勞動力(工資)

5

10

110

單位利潤

6

8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =( ,cos ), =(cos ,1),且f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[﹣π,π]上的最大值和最小值及取得最值時x的值.

查看答案和解析>>

同步練習冊答案