【題目】已知向量 =( ,cos ), =(cos ,1),且f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[﹣π,π]上的最大值和最小值及取得最值時(shí)x的值.

【答案】
(1)解:

=

=

= =

∴f(x)的最小正周期


(2)解:∵x∈[﹣π,π],∴ ,

當(dāng) ,即x=﹣π時(shí), ;

當(dāng) ,即 時(shí),

∴當(dāng)x=﹣π時(shí),函數(shù)f(x)取得最小值﹣1;當(dāng) 時(shí),函數(shù)f(x)取得最大值


【解析】(1)利用向量的數(shù)量積公式,結(jié)合輔助角公式化簡(jiǎn)函數(shù),再求函數(shù)f(x)的最小正周期;(2)利用三角函數(shù)的圖象與性質(zhì),整體思維求函數(shù)f(x)在區(qū)間[﹣π,π]上的最大值和最小值及取得最值時(shí)x的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三文科分為五個(gè)班.高三數(shù)學(xué)測(cè)試后,隨機(jī)地在各班抽取部分學(xué)生進(jìn)行成績(jī)統(tǒng)計(jì),各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了18人.抽取出來的所有學(xué)生的測(cè)試成績(jī)統(tǒng)計(jì)結(jié)果的頻率分布條形圖如圖所示,其中120~130(包括120分但不包括130分)的頻率為0.05,此分?jǐn)?shù)段的人數(shù)為5人.
(1)問各班被抽取的學(xué)生人數(shù)各為多少人?
(2)在抽取的所有學(xué)生中,任取一名學(xué)生,求分?jǐn)?shù)不小于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC= AA1 , D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系中,直線的方程為: ,直線的方程為

(Ⅰ)寫出曲線的直角坐標(biāo)方程,并指出它是何種曲線;

(Ⅱ)設(shè)與曲線交于兩點(diǎn), 與曲線交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù))在點(diǎn)處的切線經(jīng)過點(diǎn)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點(diǎn)DE,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的 倍,P為側(cè)棱SD上的點(diǎn).
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程 =﹣1表示的曲線即為函數(shù)y=f(x),有如下結(jié)論:( ) ①函數(shù)f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點(diǎn);
③函數(shù)y=f(x)的值域是R;
④若函數(shù)g(x)和f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)y=g(x)的圖象就是方程 =﹣1確定的曲線.
其中所有正確的命題序號(hào)是(
A.①②
B.②③
C.①③④
D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案