已知正三棱錐A-BCD的側(cè)面積為3
6
cm2,側(cè)面ACD底邊CD上的高為
2
cm.求正三棱錐A-BCD的體積
 
 cm3
考點(diǎn):棱柱、棱錐、棱臺的體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:根據(jù)幾何體的性質(zhì),求解出底面邊長,三棱錐的高,運(yùn)用體積公式求解.
解答: 解:設(shè)CD中點(diǎn)為O,連接OA,底面邊長為a
∴0A=
3

∵正三棱錐A-BCD的側(cè)面積為3
6
cm2
∴a=2
3
,即正三角形中心到邊的距離為1
∵側(cè)面ACD底邊CD上的高為
2
cm
∴正三棱錐A-BCD為h=
2-1
=1
∴正三棱錐A-BCD的體積=
1
3
×(
3
4
×(2
3
2)×1=
3
,
故答案為:
3
點(diǎn)評:本題考察了空間幾何體的性質(zhì),運(yùn)用體積公式求解,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)θ是△ABC的一個(gè)內(nèi)角,sinθ+cosθ=
1
5
,則雙曲線x2sinθ+y2cosθ=1的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若10x=2,10y=3,則10
3x-4y
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x丨x2+ax-1=0},4∈A,則a的值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,E、F分別是三棱錐P-ABC的棱AP、BC的中點(diǎn),PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為(  )
A、30°B、60°
C、0°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)A(1,2)其焦點(diǎn)F在x軸上.
(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)求過點(diǎn)F和OA的中點(diǎn)的直線的方程;
(Ⅲ)設(shè)點(diǎn)P(-1,m),過點(diǎn)F的直線交拋物線C于B、D兩點(diǎn),記PB,PF,PD的斜率分別為k1,k2,k3,求證:k1+k3=2k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果雙曲線的a=2,一個(gè)焦點(diǎn)為(5,0),則其標(biāo)準(zhǔn)方程為( 。
A、
x2
4
-
y2
9
=1
B、
y2
4
-
x2
21
=1
C、
x2
4
-
y2
21
=1
D、
x2
4
-
y2
25
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD中,底面ABCD為平行四邊形,且AC⊥AB,且O,E分別為BC,AB的中點(diǎn),H是SB的中點(diǎn).
已知∠ABC=45°,AB=2,PA=PB=PC=
3

(1)求證:AB⊥PO;
(2)求三棱錐P-ACD的體積;
(3)求CH與平面POE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)=
2
x
+f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案