2.已知向量$\overrightarrow{a}$=(3,-1),向量$\overrightarrow$=(-1,2),則(2$\overrightarrow{a}+\overrightarrow$)•$\overrightarrow{a}$=( 。
A.15B.14C.5D.-5

分析 根據(jù)向量的坐標(biāo)運(yùn)算和向量的數(shù)量積計(jì)算即可

解答 解:向量$\overrightarrow{a}$=(3,-1),向量$\overrightarrow$=(-1,2),
則2$\overrightarrow{a}+\overrightarrow$=2(3,-1)+(-1,2)=(6,-2)+(-1,2)=(6-1,-2+2)=(5,0),
則(2$\overrightarrow{a}+\overrightarrow$)•$\overrightarrow{a}$=(5,0)•(3,-1)=5×3+0×(-1)=15,
故選:A

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算和向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2)
(1)求證:$\left\{{\sqrt{S_n}\left.{\;}\right\}}$為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)是否存在實(shí)數(shù)λ,使得數(shù)列$\left\{{\frac{S_n}{{λ+{a_n}}}}\right\}$成等差數(shù)列?若存在,求出λ的值和該數(shù)列前n項(xiàng)的和;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+a|.
(1)若a=2,解關(guān)于x的不等式f(x)+f(x-3)≥5;
(2)若關(guān)于x的不等式f(x)-f(x+2)+4≥|1-3m|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.關(guān)于x的方程x3-ax+2=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。
A.(2,+∞)B.(3,+∞)C.(0,3 )D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是(  )
A.已知購(gòu)買一張彩票中獎(jiǎng)的概率為$\frac{1}{1000}$,則購(gòu)買1000張這種彩票一定能中獎(jiǎng)
B.互斥事件一定是對(duì)立事件
C.如圖,直線l是變量x和y的線性回歸方程,則變量x和y相關(guān)系數(shù)在-1到0之間
D.若樣本x1,x2,…xn的方差是4,則x1-1,x2-1,…xn-1的方差是3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若復(fù)數(shù)z滿足z-2i=-i•z,則z=(  )
A.-1+iB.1-iC.1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某科研機(jī)構(gòu)為了研究中年人禿發(fā)與心臟病是否有關(guān),隨機(jī)調(diào)查了一些中年人的情況,具體數(shù)據(jù)如表:根據(jù)表中數(shù)據(jù)得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因?yàn)镵2≥10.828,則斷定禿發(fā)與心臟病有關(guān)系,那么這種判斷出錯(cuò)的可能性為(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.0.1B.0.05C.0.01D.0.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.4sin15°cos75°-2等于( 。
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品不喜歡甜品合 計(jì)
南方學(xué)生602080
北方學(xué)生101020
合 計(jì)7030100
根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
P(K2≥k00.1000.0500.010
k02.7063.8416.635
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案