【題目】某工廠新研發(fā)了一種產(chǎn)品,該產(chǎn)品每件成本為5元,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行銷售,得到如下數(shù)據(jù):

單價(jià)(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

1)求銷量(件)關(guān)于單價(jià)(元)的線性回歸方程;

2)若單價(jià)定為10元,估計(jì)銷量為多少件;

3)根據(jù)銷量關(guān)于單價(jià)的線性回歸方程,要使利潤最大,應(yīng)將價(jià)格定為多少?

參考公式:.參考數(shù)據(jù):,

【答案】(1)(2)當(dāng)銷售單價(jià)定為10元時(shí),銷量為50件(3)要使利潤達(dá)到最大,應(yīng)將價(jià)格定位8.75.

【解析】

1)由均值公式求得均值,,再根據(jù)給定公式計(jì)算回歸系數(shù),得回歸方程;

2)在(1)的回歸方程中令,求得值即可;

3)由利潤可化為的二次函數(shù),由二次函數(shù)知識(shí)可得利潤最大值及此時(shí)的.

1)由題意可得,

,

,

從而,故所求回歸直線方程為.

2)當(dāng)時(shí),

故當(dāng)銷售單價(jià)定為10元時(shí),銷量為50.

3)由題意可得,,

.

故要使利潤達(dá)到最大,應(yīng)將價(jià)格定位8.75.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=3cos2x的圖象,只需把函數(shù)y=3sin(2x+ )的圖象上所有的點(diǎn)(
A.向右平行移動(dòng) 個(gè)單位長度
B.向右平行移動(dòng) 個(gè)單位長度
C.向左平行移動(dòng) 個(gè)單位長度
D.向左平移移動(dòng) 個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1 , CC1 , BC的中點(diǎn),AE⊥A1B1 , D為棱A1B1上的點(diǎn).

(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)相關(guān)規(guī)定,24小時(shí)內(nèi)的降水量為日降水量(單位:mm),不同的日降水量對(duì)應(yīng)的降水強(qiáng)度如表:

日降水量

(0,10)

[10,25)

[25,50)

[50,100)

[100,250)

[250,+∞)

降水強(qiáng)度

小雨

中雨

大雨

暴雨

大暴雨

特大暴雨

為分析某市“主汛期”的降水情況,從該市2015年6月~8月有降水記錄的監(jiān)測數(shù)據(jù)中,隨機(jī)抽取10天的數(shù)據(jù)作為樣本,具體數(shù)據(jù)如下:
16 12 23 65 24 37 39 21 36 68
(1)請(qǐng)完成以如表示這組數(shù)據(jù)的莖葉圖;

(2)從樣本中降水強(qiáng)度為大雨以上(含大雨)天氣的5天中隨機(jī)選取2天,求恰有1天是暴雨天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)相關(guān)規(guī)定,24小時(shí)內(nèi)的降水量為日降水量(單位:mm),不同的日降水量對(duì)應(yīng)的降水強(qiáng)度如表:

日降水量

(0,10)

[10,25)

[25,50)

[50,100)

[100,250)

[250,+∞)

降水強(qiáng)度

小雨

中雨

大雨

暴雨

大暴雨

特大暴雨

為分析某市“主汛期”的降水情況,從該市2015年6月~8月有降水記錄的監(jiān)測數(shù)據(jù)中,隨機(jī)抽取10天的數(shù)據(jù)作為樣本,具體數(shù)據(jù)如下:
16 12 23 65 24 37 39 21 36 68
(1)請(qǐng)完成以如表示這組數(shù)據(jù)的莖葉圖;

(2)從樣本中降水強(qiáng)度為大雨以上(含大雨)天氣的5天中隨機(jī)選取2天,求恰有1天是暴雨天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某市大約有800萬網(wǎng)絡(luò)購物者,某電子商務(wù)公司對(duì)該市n名網(wǎng)絡(luò)購物者某年度上半年的消費(fèi)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)消費(fèi)金額(單位:萬元)都在區(qū)間[0.5,1.1]內(nèi),其頻率分布直方圖如圖所示.

(1)求該市n名網(wǎng)絡(luò)購物者該年度上半年的消費(fèi)金額的平均數(shù)與中位數(shù)(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值).

(2)現(xiàn)從前4組中選取18人進(jìn)行網(wǎng)絡(luò)購物愛好調(diào)查.

(i)求在前4組中各組應(yīng)該選取的人數(shù);

(ii)在前2組所選取的人中,再隨機(jī)選2人,求這2人都是來自第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱錐P﹣ABC中E,F(xiàn)分別是AC,PC的中點(diǎn),若EF⊥BF,AB=2,則三棱錐P﹣ABC的外接球的表面積(
A.4π
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)在其定義域上為單調(diào)增函數(shù),求的取值范圍;

(2)記的導(dǎo)函數(shù)為,當(dāng)時(shí),證明:存在極小值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量,令函數(shù),若函數(shù)的部分圖象如圖所示,且點(diǎn)的坐標(biāo)為.

(1)求點(diǎn)的坐標(biāo);

(2)求函數(shù)的單調(diào)增區(qū)間及對(duì)稱軸方程;

(3)若把方程的正實(shí)根從小到大依次排列為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案