【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué),分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學(xué)意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個點(diǎn)C、D,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖二中的最上方的線段作相同的操作,得到圖3中的圖形;依次類推,我們就得到了以下一系列圖形;

記第n個圖形(圖1為第1個圖形)中的所有線段長的和為,若對任意的正整數(shù)n,都有.則正數(shù)a的最大值為______

【答案】

【解析】

由題意歸納可得(),利用累加法可得,進(jìn)而可得,即,即可得解.

由題意,得圖1中的線段為a,

2中的正六邊形邊長為,;

3中的最小正六邊形的邊長為,

4中的最小正六邊形的邊長為,

由此類推,可知,(),

故當(dāng)時,

,

當(dāng)時,,滿足上式,

所以,從而,即

所以存在最大的正數(shù).滿足題意.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因?yàn)榱、八是中國人的吉利?shù)字,所以好多瓷器都做成六棱形和八棱形.數(shù)學(xué)李老師有一個正六棱柱形狀的筆筒,如圖,底面邊長為,高為(底部及筒壁厚度忽略不計).一根長度為的圓鐵棒(粗細(xì)忽略不計)斜放在筆筒內(nèi)部,的一端置于正六棱柱某一側(cè)棱的底端,另一端置于和該側(cè)棱正對的側(cè)棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20201月,某公司以問卷的形式調(diào)查影響員工積極性的六項關(guān)鍵指標(biāo):績效獎勵、排班制度、激勵措施、工作環(huán)境、人際關(guān)系、晉升渠道,在確定各項指標(biāo)權(quán)重結(jié)果后,進(jìn)而得到指標(biāo)重要性分析象限圖(如圖).若客戶服務(wù)中心從中任意抽取不同的兩項進(jìn)行分析,則這兩項來自影響稍弱區(qū)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為,,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點(diǎn),,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長為的的菱形, ,四邊形是矩形,平面平面, 分別是的中點(diǎn).

)求證:平面平面

)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)從甲、乙兩個班中各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績的眾數(shù)是83,乙班學(xué)生成績的平均數(shù)是86,則的值為( )

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

1)求曲線的參數(shù)方程與直線的普通方程;

2)設(shè)點(diǎn)過為曲線上的動點(diǎn),點(diǎn)和點(diǎn)為直線上的點(diǎn),且滿足為等邊三角形,求邊長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=Asinωx)(A0,ω0,0φπ)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,又,且銳角C滿足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點(diǎn)處的切線方程;

(2)令,討論的單調(diào)性并判斷有無極值,若有,求出極值.

查看答案和解析>>

同步練習(xí)冊答案