【題目】已知橢圓的左右焦點(diǎn)分別為,離心率為,點(diǎn)在橢圓上,且的周長為

1)求橢圓的方程;

2)已知過點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)在直線上,求的最小值.

【答案】1;(2.

【解析】

1)根據(jù)題意,得到,求出,得到,進(jìn)而可求出橢圓方程;

2)當(dāng)斜率為時(shí),得到,易求出結(jié)果;當(dāng)直線不斜率為時(shí),設(shè),設(shè)直線方程為,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理,以及弦長公式等,得到,再令,,將原式化為,根據(jù)二次函數(shù)性質(zhì),即可求出結(jié)果.

1)由題意可得:,

解得:,所以;

故橢圓方程為:;

2)①當(dāng)直線斜率為時(shí),

②當(dāng)直線不斜率為時(shí):設(shè),設(shè)直線方程為

聯(lián)立方程,得,

,,所以

,則,

又令,則,記為

其對稱軸,開口向上,

所以函數(shù)上單調(diào)遞減,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)的兩個(gè)不同零點(diǎn),是否存在實(shí)數(shù),使成立?若存在,的值;若不存在,請說明理由.

(2)設(shè),函數(shù),存在個(gè)零點(diǎn).

(i)的取值范圍;

(ii)設(shè)分別是這個(gè)零點(diǎn)中的最小值與最大值,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(Ⅲ)設(shè),對任意恒有,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動點(diǎn)(異于左右頂點(diǎn)),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系下,方程的圖形為如圖所示的“幸運(yùn)四葉草”,又稱為玫瑰線.

(1)當(dāng)玫瑰線的時(shí),求以極點(diǎn)為圓心的單位圓與玫瑰線的交點(diǎn)的極坐標(biāo);

(2)求曲線上的點(diǎn)M與玫瑰線上的點(diǎn)N距離的最小值及取得最小值時(shí)的點(diǎn)M、N的極坐標(biāo)(不必寫詳細(xì)解題過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某項(xiàng)娛樂活動的海選過程中評分人員需對同批次的選手進(jìn)行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績在內(nèi)的選手可以參加復(fù)活賽,如果通過,也可以參加第二輪比賽.

(1)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,求a的值及估計(jì)這200名參賽選手的成績平均數(shù);

(2)根據(jù)已有的經(jīng)驗(yàn),參加復(fù)活賽的選手能夠進(jìn)入第二輪比賽的概率為,假設(shè)每名選手能否通過復(fù)活賽相互獨(dú)立,現(xiàn)有3名選手進(jìn)入復(fù)活賽,記這3名選手在復(fù)活賽中通過的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,分別為、的中點(diǎn).

(1)證明:平面;

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,過的直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為.

(1)當(dāng)軸垂直時(shí),求直線的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的長軸長為,點(diǎn)、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過中心,且,

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

同步練習(xí)冊答案