已知二次函數(shù)y=f(x)的頂點坐標(biāo)為(-
3
2
,49),且方程f(x)=0的兩個實根之差的絕對值等于7,則此二次函數(shù)的解析式是
 
考點:函數(shù)解析式的求解及常用方法,二次函數(shù)的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:將函數(shù)的解析式設(shè)為頂點式,令y=0,得一元二次方程,利用韋達(dá)定理表示兩根和,兩根積,再由方程f(x)=0的兩個實根之差等于7,列出等式求出即可.
解答: 解:由題意可設(shè)二次函數(shù)y=a(x+
3
2
2+49,
令y=0,整理可得,ax2+3ax+
9
4
a+49=0,
∴x1+x2=-3,x1x2=
9
4
+
49
a
,
∴|x1-x2|=
(x1+x2)2-4x1x2
=
9-4(
9
4
+
49
a
)
=7,
解得a=-4,
故二次函數(shù)的解析式為:y=-4(x+
3
2
2+49,即y=-4x2-12x+40.
故答案為:y=-4x2-12x+40.
點評:本題考查了二次函數(shù)的解析式,一元二次方程根與系數(shù)的關(guān)系,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位同學(xué)從A、B、C、D…共n(n≥2,n∈N+)所高校中,任選兩所參加自主招生考試(并且只能選兩所高校),但同學(xué)甲特別喜歡A高校,他除選A高校外,再在余下的n-1所中隨機選1所;同學(xué)乙對n所高校沒有偏愛,在n所高校中隨機選2所.若甲同學(xué)未選中D高校且乙選中D高校的概率為
3
10

(1)求自主招生的高校數(shù)n;
(2)記X為甲、乙兩名同學(xué)中未參加D高校自主招生考試的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足
a
=(x2,y),
b
=(x-
1
x
,-1)
,且
a
b
=-1
.如果存在正項數(shù)列{an}滿足:a1=
1
2
,
n
i=1
f(ai)-n=
n
i=1
ai3-n2an(n∈N*)

(1)求數(shù)列{an}的通項;
(2)證明:
n
i=1
ai
i
<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將圓周上5個點按如下規(guī)則染色:先任選一點染成紅色,然后依逆時針方向,第1步轉(zhuǎn)過1個間隔將到達(dá)的那個點染紅,第2步轉(zhuǎn)過2個間隔將到達(dá)的那個點染紅,第k步轉(zhuǎn)過k個間隔將到達(dá)的那個點染紅.一直進(jìn)行下去,可得到
個紅點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運算a*b為:a*b=
a(a≤b)
b(a>b)
,如1*2=1,則函數(shù)f(x)=2x*2-x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在二維平面向量加法運算中:若
a
=(x1,y1),
b
=(x2,y2),則
a
+
b
=(x1+x2,y1+y2).若類比到空間三維向量的加法運算:若
a
=(x1,y1,z1),
b
=(x2,y2,z2),則
a
+
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為△ABC所在平面外一點,O為P在平面ABC上的射影.(1)若PA=PB=PC,則O點是△ABC的
 
心;(2)若PA⊥BC,PB⊥AC,則點O是△ABC的
 
心;(3)若PA,PB,PC兩兩互相垂直,則O點是△ABC的
 
心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-
1
3
x3+
1
2
x2+2ax
,若f(x)在(
2
3
,+∞)上存在單調(diào)遞增區(qū)間,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求得8251與6105的最大公約數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案