1.已知曲線C的方程為$\frac{{x}^{2}}{{m}^{2}+5}$$+\frac{{y}^{2}}{{m}^{2}+1}$=1(m∈R),命題p:?m∈R使得曲線C的焦距為2,則命題p的否定是( 。
A.?m∈R曲線C的焦距都為2B.?m∈R曲線C的焦距都不為2
C.?m∈R曲線C的焦距不為2D.?m∈R曲線C的焦距不都為2

分析 根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷即可.

解答 解:命題p是特稱命題,則命題的否定是:?m∈R曲線C的焦距都不為2,
故選:B

點(diǎn)評 本題主要考查含有量詞的命題的否定,根據(jù)特稱命題的否定是全稱命題是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-1≥0\\ x-2y+2≥0\\ 2x-y-2≤0\end{array}\right.$,目標(biāo)函數(shù)z=ax+y的最大值不大于3a,則實(shí)數(shù)a的取值范圍是( 。
A.[2,+∞)B.$[0,\frac{1}{3}]$C.$[\frac{1}{3},3]$D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=px-$\frac{p}{x}$-2lnx.
(Ⅰ)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=$\frac{2e}{x}$(e為自然對數(shù)底數(shù)),若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若a>b>0,0<c<1,則( 。
A.logac<logbcB.logca<logcbC.c<bcD.a>cb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)P(3cosθ,sinθ)在直線x+3y=1上,則sin2θ=-$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)F為拋物線C:y2=2px(p>0)的焦點(diǎn),M(4,t)(t>0)為拋物線C上的點(diǎn),且|MF|=5,線段MF的中點(diǎn)為N,點(diǎn)T為C上的一個(gè)動(dòng)點(diǎn),則|TF|+|TN|的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.集合A={1,3,5,7},B={x|2≤x≤5},則A∩B={3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一組數(shù)據(jù):40、10、80、20、70、30、50、90、70,若這組數(shù)據(jù)的平均數(shù)為m,眾數(shù)為n,中位數(shù)為p,則m,n,p之間的大小關(guān)系是n>m>p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知ω>0,平面向量$\overrightarrow{m}$=(2sinωx,$\sqrt{3}$),$\overrightarrow{n}$=(2cos(ωx+$\frac{π}{3}$),1),函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$的最小正周期是π.
( I)求f(x)的解析式和對稱軸方程;
( II)求f(x)在$[-\frac{π}{4},\frac{π}{6}]$上的值域.

查看答案和解析>>

同步練習(xí)冊答案