(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)系內(nèi)的曲線ρ=sinθ的中心O與點(diǎn)D(1,π)的距離為
5
2
5
2
分析:利用曲線的極坐標(biāo)方程,轉(zhuǎn)化為直角坐標(biāo)方程,極坐標(biāo)轉(zhuǎn)化為直角坐標(biāo),然后根據(jù)兩點(diǎn)的距離公式進(jìn)行求解.
解答:解:極坐標(biāo)系內(nèi)的曲線ρ=sinθ
即ρ2=ρsinθ,則x2+y2=y
∴曲線的直角坐標(biāo)方程為x2+(y-
1
2
2=
1
4
,圓心O(0,
1
2

點(diǎn)D(1,π)的直角坐標(biāo)為(1×cosπ,1×sinπ)即D(-1,0)
∴極坐標(biāo)系內(nèi)的曲線ρ=sinθ的中心O與點(diǎn)D(1,π)的距離為
(0-1)2+(
1
2
-0)2
=
5
2

故答案為:
5
2
點(diǎn)評(píng):本題是基礎(chǔ)題,考查極坐標(biāo)與直角坐標(biāo)的化為,極坐標(biāo)方程與直角坐標(biāo)方程的互化,兩點(diǎn)的距離公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,單位長(zhǎng)度一致的坐標(biāo)系下,已知曲線C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線相切時(shí)實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為
2
,
π
4
2
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點(diǎn)M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O是極點(diǎn),則△AOB的面積等于
3
3
4
3
3
4

(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn)P(2,
π3
),則過(guò)點(diǎn)P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案