【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.
【答案】
(1)解:當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)化為|2x﹣1|+|2x﹣2|﹣x﹣3<0.
設(shè)y=|2x﹣1|+|2x﹣2|﹣x﹣3,則 y= ,它的圖象如圖所示:
結(jié)合圖象可得,y<0的解集為(0,2),故原不等式的解集為(0,2).
(2)解:設(shè)a>﹣1,且當(dāng) 時(shí),f(x)=1+a,不等式化為 1+a≤x+3,故 x≥a﹣2對(duì) 都成立.
故﹣ ≥a﹣2,解得 a≤ ,故a的取值范圍為(﹣1, ].
【解析】(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)化為|2x﹣1|+|2x﹣2|﹣x﹣3<0.設(shè)y=|2x﹣1|+|2x﹣2|﹣x﹣3,畫(huà)出函數(shù)y的圖象,數(shù)形結(jié)合可得結(jié)論.(2)不等式化即 1+a≤x+3,故 x≥a﹣2對(duì) 都成立.故﹣ ≥a﹣2,由此解得a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)單調(diào)性的性質(zhì)和絕對(duì)值不等式的解法,需要了解函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集;含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中, 平面,底面是菱形, , , . 為與的交點(diǎn), 為棱上一點(diǎn),
(1)證明:平面⊥平面;
(2)若三棱錐的體積為,
求證: ∥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)=
(1)寫(xiě)出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)=-m恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)若≤n2-2bn+1對(duì)所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱垂直于底面, , , , , 分別為, 的中點(diǎn).
(1)求證:平面平面;
(2)求證:在棱上存在一點(diǎn),使得平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn).
(1)若p=2且∠BFD=90°時(shí),求圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,設(shè)直線m與拋物線C的另一個(gè)交點(diǎn)為E,在y軸上求一點(diǎn)G,使得∠OGE=∠OGA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=是定義在R上的奇函數(shù),且f(1)=1.
(1)求a,b的值;
(2)判斷并用定義證明f(x)在(+∞)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)是偶函數(shù)且在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】調(diào)查表明,市民對(duì)城市的居住滿意度與該城市環(huán)境質(zhì)量、城市建設(shè)、物價(jià)與收入的滿意度有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的滿意度指標(biāo)分別記為x、y、z,并對(duì)它們進(jìn)行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標(biāo)ω=x+y+z的值評(píng)定居民對(duì)城市的居住滿意度等級(jí):若ω≥4,則居住滿意度為一級(jí);若2≤ω≤3,則居住滿意度為二級(jí);若0≤ω≤1,則居住滿意度為三級(jí),為了解某城市居民對(duì)該城市的居住滿意度,研究人員從此城市居民中隨機(jī)抽取10人進(jìn)行調(diào)查,得到如下結(jié)果:
人員編號(hào) | 1 | 2 | 3 | 4 | 5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,1,1) | (1,2,1) |
人員編號(hào) | 6 | 7 | 8 | 9 | 10 |
(x,y,z) | (1,2,2) | (1,1,1) | (1,2,2) | (1,0,0) | (1,1,1) |
(1)在這10名被調(diào)查者中任取兩人,求這兩人的居住滿意度指標(biāo)z相同的概率;
(2)從居住滿意度為一級(jí)的被調(diào)查者中隨機(jī)抽取一人,其綜合指標(biāo)為m,從居住滿意度不是一級(jí)的被調(diào)查者中任取一人,其綜合指標(biāo)為n,記隨機(jī)變量ξ=m﹣n,求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x+1)2ex , 設(shè)k∈[﹣3,﹣1],對(duì)任意x1 , x2∈[k,k+2],則|f(x1)﹣f(x2)|的最大值為( )
A.4e﹣3
B.4e
C.4e+e﹣3
D.4e+1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com