已知數(shù)列
的前
項和
和通項
滿足
數(shù)列
中,
(1)求數(shù)列
,
的通項公式;
(2)數(shù)列
滿足
是否存在正整數(shù)
,使得
時
恒成立?若存在,求
的最小值;若不存在,試說明理由.
解(1)由
得
當
時,
即
(由題意可知
).
是公比為
的等比數(shù)列,而
(3分)
由
得
(6分)
(2)
設
則
,①
(1)-(2)
,化簡得
(10分)
而
都隨
的增大而增大,當
時
,
所以所求的正整數(shù)
存在,其最小值為2.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分) 設等差數(shù)列{
an}的首項
a1為
a,公差
d=2,
前
n項和為
Sn.
(Ⅰ) 若
S1,
S2,
S4成等比數(shù)列,求數(shù)列{
an}的通項公式;
(Ⅱ) 證明:
n∈N*,
Sn,
Sn+1,
Sn+2不構成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知等差數(shù)列{
}的前n項和為
,且
。
(1)求數(shù)列{
}的通項公式;
(2)設
,求數(shù)列{
}的前n項和
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
預測人口的變化趨勢有很多方法,“直接推算法”使用的公式是
其中
為預測期內(nèi)年增長率,
,
為預測期人口數(shù),
為初期人口數(shù),
為預測期間隔年數(shù)。如果在某一時期有
,那么在這期間人口數(shù)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知數(shù)列{a
n}滿足 a
1=1,a
n+1=
.,寫出它的前5項,并歸納出數(shù)列的一個通項公式
(不要求證明)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設{
an}遞增等差數(shù)列,前三項的和為12,前三項的積為48,則它的首項是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分16分)A、B是函數(shù)f(x)=
+
的圖象上的任意兩點,且
=
(
),已知點M的橫坐標為
.
(Ⅰ)求證:M點的縱坐標為定值;
(Ⅱ)若S
n=f(
)+f(
)+…+f(
),n∈N
+且n≥2,求S
n;
(Ⅲ)已知數(shù)列{a
n}的通項公式為
. T
n為其前n項的和,若T
n<
(S
n+1+1),對一切正整數(shù)都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)已知數(shù)列
的前
項和為
,
,
(I)求數(shù)列
的通項公式;
(II)設
,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分10分)
(1)等差數(shù)列{
}中,已知a
1=
,a
2+a
5=4,
=33,試求n的值.
(2)在等比數(shù)列{
}中,a
5=162,公比q=3,前n項和
=242,求首項a
1和項數(shù)n.
查看答案和解析>>