分析 由題意和通項(xiàng)公式可得數(shù)列的公比,再由求和公式可得n的方程,解方程可得.
解答 解:由題意可得等比數(shù)列{an}的首項(xiàng)a1=6,第6項(xiàng)a6=-$\frac{3}{16}$,
∴公比q=$\root{5}{\frac{{a}_{6}}{{a}_{1}}}$=$\root{5}{-\frac{1}{32}}$=-$\frac{1}{2}$,∴$\frac{6×[1-(-\frac{1}{2})^{n}]}{1-(-\frac{1}{2})}$=$\frac{255}{64}$,
解關(guān)于n的方程可得8,故數(shù)列的前8項(xiàng)的和是$\frac{255}{64}$.
點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和求和公式,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$=(0,0),$\overrightarrow$=(2,3) | B. | $\overrightarrow{a}$=(1,-3),$\overrightarrow$=(2,-6) | C. | $\overrightarrow{a}$=(4,6),$\overrightarrow$=(6,9) | D. | $\overrightarrow{a}$=(2,3),$\overrightarrow$=(-4,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | B. | [-$\sqrt{3}$,$\sqrt{3}$] | C. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) | D. | (-$\sqrt{3}$,$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com