【題目】某企業(yè)在“精準扶貧”行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內(nèi)把180噸水果運輸?shù)交疖囌荆瑒t通過合理調(diào)配車輛運送這批水果的費用最少為______元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列六個命題:
(1)若,則函數(shù)的圖像關(guān)于直線對稱.
(2)與的圖像關(guān)于直線對稱.
(3)的反函數(shù)與是相同的函數(shù).
(4)無最大值也無最小值.
(5)的最小正周期為.
(6)有對稱軸兩條,對稱中心有三個.
則正確命題的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在區(qū)間上的值域.
(2)對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府為改善居民的住房條件,集中建設(shè)一批經(jīng)適樓房.用了1400萬元購買了一塊空地,規(guī)劃建設(shè)8幢樓,要求每幢樓的面積和層數(shù)等都一致,已知該經(jīng)適房每幢樓每層建筑面積均為250平方米,第一層建筑費用是每平方米3000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加80元.
(1)若該經(jīng)適樓房每幢樓共層,總開發(fā)費用為萬元,求函數(shù)的表達式(總開發(fā)費用=總建筑費用+購地費用);
(2)要使該批經(jīng)適房的每平方米的平均開發(fā)費用最低,每幢樓應(yīng)建多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著通識教育理念的推廣及高校課程改革的深入,選修課越來越受到人們的重視.國內(nèi)一些知名院校在公共選修課的設(shè)置方面做了許多有益的探索,并且取得了一定的成果.因為選修課的課程建設(shè)處于探索階段,選修課的教學(xué)、管理還存在很多的問題,所以需要在通識教育的基礎(chǔ)上制定科學(xué)的、可行的解決方案,為學(xué)校選修課程的改革與創(chuàng)新、課程設(shè)置、考試考核、人才培養(yǎng)提供參考.某高校采用分層抽樣法抽取了數(shù)學(xué)專業(yè)的50名參加選修課與不參加選修課的學(xué)生的成績,統(tǒng)計數(shù)據(jù)如下表:
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
參加選修課 | 16 | 9 | 25 |
不參加選修課 | 8 | 17 | 25 |
總計 | 24 | 26 | 50 |
(1)試運用獨立性檢驗的思想方法你能否有99%的把握認為“學(xué)生的成績優(yōu)秀與是否參加選修課有關(guān)”,并說明理由;
(2)如果從數(shù)學(xué)專業(yè)隨機抽取5名學(xué)生,求抽到參加選修課的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)做概率計算).
參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線上動點到定點與定直線的距離之比為常數(shù);
(1)求曲線的軌跡方程;
(2)設(shè)圓心為的圓與曲線交于點與點,求的最小值,并求此時圓的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),下列個結(jié)論正確的是__________(把你認為正確的答案全部寫上).
(1)任取,都有;
(2)函數(shù)在上單調(diào)遞增;
(3),對一切恒成立;
(4)函數(shù)有個零點;
(5)若關(guān)于的方程有且只有兩個不同的實根,,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線經(jīng)過點,曲線的直角坐標方程為.
(1)求曲線的普通方程,曲線的極坐標方程;
(2)若,是曲線上兩點,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在上的奇函數(shù),對,均有,已知當(dāng)時, ,則下列結(jié)論正確的是( )
A. 的圖象關(guān)于對稱 B. 有最大值1
C. 在上有5個零點 D. 當(dāng)時,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com