9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率為$\frac{\sqrt{6}}{3}$,過(guò)左焦點(diǎn)F1作x軸的垂線交橢圓C的上方于點(diǎn)A,且|OA|=$\frac{\sqrt{21}}{3}$,其中,O為坐標(biāo)原點(diǎn).
(I)求橢圓C的方程;
(Ⅱ)求橢圓C上過(guò)點(diǎn)A的切線方程.

分析 (Ⅰ)由橢圓的離心率為$\frac{\sqrt{6}}{3}$,過(guò)左焦點(diǎn)F1作x軸的垂線交橢圓C的上方于點(diǎn)A,且|OA|=$\frac{\sqrt{21}}{3}$,列出方程組,求出a,b,由此能出橢圓C的方程.
(Ⅱ)求出A(-$\sqrt{2}$,$\frac{\sqrt{3}}{3}$),對(duì)橢圓方程求導(dǎo)得$\frac{2}{3}x+2y{y}^{'}=0$,利用導(dǎo)數(shù)的幾何意義能求出橢圓C上過(guò)點(diǎn)A的切線方程.

解答 解:(Ⅰ)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率為$\frac{\sqrt{6}}{3}$,
∴$e=\frac{c}{a}=\frac{\sqrt{6}}{3}$,①
∵過(guò)左焦點(diǎn)F1作x軸的垂線交橢圓C的上方于點(diǎn)A,且|OA|=$\frac{\sqrt{21}}{3}$,
∴${c}^{2}+(\frac{^{2}}{a})^{2}$=$(\frac{\sqrt{21}}{3})^{2}$,②
又a2=b2+c2,③
聯(lián)立①②③,解得:a=$\sqrt{3}$,b=1,c=$\sqrt{2}$,
∴橢圓C的方程為$\frac{{x}^{2}}{3}+{y}^{2}$=1.
(Ⅱ)A(-$\sqrt{2}$,$\frac{\sqrt{3}}{3}$),$\frac{2}{3}x+2y{y}^{'}=0$,
把A(-$\sqrt{2}$,$\frac{\sqrt{3}}{3}$)代入,得:y′=$\frac{\sqrt{2}}{\sqrt{3}}$,
∴橢圓C上過(guò)點(diǎn)A的切線方程為:
y-$\frac{\sqrt{3}}{3}$=$\frac{\sqrt{2}}{\sqrt{3}}$(x+$\sqrt{2}$),即$\sqrt{2}x-\sqrt{3}y$+3=0.

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查橢圓上過(guò)點(diǎn)A的切線方程的求法,考查橢圓、直線方程、導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.橢圓x2+my2=1的長(zhǎng)軸長(zhǎng)為4,則其焦點(diǎn)坐標(biāo)為(  )
A.(±3,0)B.(±1,0)C.(0,±1)D.(0,±$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=alnx-x2
(1)當(dāng)a=2時(shí),求函數(shù)y=f(x)在[$\frac{1}{2}$,2]上的最大值;
(2)令g(x)=f(x)+ax,若y=g(x))在區(qū)間(0,3)上為單調(diào)遞增函數(shù),求a的取值范圍;
(3)當(dāng)a=2時(shí),函數(shù)h(x)=f(x)-mx的圖象與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,又h′(x)是h(x)的導(dǎo)函數(shù).若正常數(shù)α,β滿足條件α+β=1,β≥α.試比較h'(αx1+βx2)與0的關(guān)系,并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在期中考試中,高三某班50名學(xué)生化學(xué)成績(jī)的平均分為85分、方差為8.2,該班某位同學(xué)知道自己的化學(xué)成績(jī)?yōu)?5,則下列四個(gè)數(shù)中不可能是該班化學(xué)成績(jī)的是( 。
A.65B.75C.90D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)(0,$\sqrt{2}$),離心率為$\frac{\sqrt{3}}{3}$.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)P(1,1)分別作斜率為k1、k2的橢圓的動(dòng)弦AB、CD,設(shè)M、N分別為線段AB、CD的中點(diǎn),若k1+k2=1,是否存在一個(gè)定點(diǎn)Q,使得其在直線MN上,若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短軸長(zhǎng)為2,焦距是短軸的$\sqrt{2}$倍.
(1)求橢圓的方程;
(2)若直線y=kx+2( k≠0)與橢圓交于C、D兩點(diǎn),|CD|=$\frac{{6\sqrt{2}}}{5}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短軸端點(diǎn)到右焦點(diǎn)F(1,0)的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),交直線l:x=4于點(diǎn)P,若|PA|=λ1|AF|,|PB|=λ2|BF|,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),隨機(jī)抽取了6個(gè)試銷售數(shù)據(jù),得到第i個(gè)銷售單價(jià)xi(單位:元)與銷售yi(單位:件)的數(shù)據(jù)資料,算得$\sum_{i=1}^6{{x_i}=51,}\sum_{i=1}^6{{y_i}=480,}\sum_{i=1}^6{{x_i}{y_i}=4066,}\sum_{i=1}^6{{x_i}^2=434.2.}$
(1)求回歸直線方程$\hat y=\hat bx+\hat a$;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入-成本)
附:回歸直線方程$\hat y=\hat bx+\hat a$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$是樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知定義域?yàn)檎麛?shù)集的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x,x為偶數(shù)}\\{x-1,x為奇數(shù)}\end{array}\right.$,f1(x)=f(x),fn(x)=f[fn-1(x)].若fn(21)=1,則n=6;若f4(x)=1,則x所有的值構(gòu)成的集合為{7,9,10,12,16}.

查看答案和解析>>

同步練習(xí)冊(cè)答案