已知定義域?yàn)镽的函數(shù)f(x)為奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x-1.
(1)求f(x)在[-1,0)上的解析式;
(2)求f(24)的值.

(1)f(x)=-()x+1
(2)-

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的值;
(2)判斷上的單調(diào)性,并用定義給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).
(1)若,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是否存在這樣的實(shí)數(shù)a,使函數(shù)f(x)=x2+(3a-2)x+a-1在區(qū)間[-1,3]上恒有一個(gè)零點(diǎn),且只有一個(gè)零點(diǎn)?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)本題有2個(gè)小題,第一小題滿分6分,第二小題滿分1分.
設(shè)常數(shù),函數(shù)
(1)若=4,求函數(shù)的反函數(shù)
(2)根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式其中為常數(shù)。己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x+ (x≠0,a∈R).
(1)當(dāng)a=4時(shí),證明:函數(shù)f(x)在區(qū)間[2,+∞)上單調(diào)遞增;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義函數(shù)(為定義域)圖像上的點(diǎn)到坐標(biāo)原點(diǎn)的距離為函數(shù)的的模.若模存在最大值,則稱之為函數(shù)的長距;若模存在最小值,則稱之為函數(shù)的短距.
(1)分別判斷函數(shù)是否存在長距與短距,若存在,請(qǐng)求出;
(2)求證:指數(shù)函數(shù)的短距小于1;
(3)對(duì)于任意是否存在實(shí)數(shù),使得函數(shù)的短距不小于2且長距不大于4.若存在,請(qǐng)求出的取值范圍;不存在,則說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個(gè)矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為運(yùn)動(dòng)場地(其中兩個(gè)小場地形狀相同),塑膠運(yùn)動(dòng)場地占地面積為S平方米.
(1)分別寫出用x表示y和S的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計(jì)能使S取得最大值,最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案