函數(shù)y=|tanx|的最小正周期為( 。
A、
π
2
B、π
C、2π
D、無最小正周期
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)正切函數(shù)的周期性進(jìn)行求解即可.
解答: 解:∵y=tanx的周期為π,
而y=|tanx|的周期和y=tanx的周期相同,
∴函數(shù)y=|tanx|的最小正周期為π,
故選:B
點評:本題主要考查三角函數(shù)的周期的計算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某中學(xué)高三文科學(xué)生參加數(shù)學(xué)和地理的水平測試,抽取50人進(jìn)行測試,測試成績結(jié)果如下表:
人數(shù)數(shù) 學(xué)
良好及格不及格
地理良好4102
及格a9b
不及格523
測試成績分為良好、及格、不及格三個等級,橫向、縱向分別表示地理成績與數(shù)學(xué)成績,例如表中數(shù)學(xué)成績?yōu)榧案竦墓灿?0+9+2=21人.
(Ⅰ)若在該樣本中,數(shù)學(xué)成績的良好率是40%,求a,b的值;
(Ⅱ)在地理成績?yōu)榧案竦膶W(xué)生中,若a≥4,b≥3,求數(shù)學(xué)成績良好人數(shù)比及格的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,0,0),B(0,1,0),C(0,0,1),且A,B,C,M四點共面,那么點M的坐標(biāo)可以是( 。
A、(1,1,1)
B、(2,-1,-1)
C、(
1
4
,
1
2
,
1
4
D、(
1
3
,
2
3
,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=ax+b的圖象如圖,則函數(shù)y=
ax+1+ab
x+b
的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點G是△ABC的重心,GA=2
3
,GB=2
2
,GC=2,則△ABC的面積=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=2”是“直線(m-1)x+y=1和直線mx-2y=1相互垂直”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB邊上的高所在的直線方程為l1:x+3y+2=0,∠C的平分線所在的直線方程為l2:y-2=0,且點A的坐標(biāo)為(0,-2).求:
(1)點C的坐標(biāo);
(2)直線AB的方程;
(3)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義方程f(x)=f′(x)的實數(shù)根x0叫做函數(shù)f(x)的“好點”,如果函數(shù)g(x)=x,h(x)=2+lnx,φ(x)=cosx(x∈(
π
2
,π))的“好點”分別為α,β,γ,那么α,β,γ的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(4,2),令an=f(n+1)+f(n),n∈N+,記數(shù)列{
1
an
}的前n項和為Sn,則Sn=10時,n的值是
 

查看答案和解析>>

同步練習(xí)冊答案