【題目】已知直線及點(diǎn).
(1)證明直線過(guò)某定點(diǎn),并求該定點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)到直線的距離最大時(shí),求直線的方程.
【答案】(1)證明見(jiàn)解析,定點(diǎn)坐標(biāo)為;(2)15x+24y+2=0.
【解析】試題分析:(1)直線l的方程可化為 a(2x+y+1)+b(-x+y-1)=0,由,即可解得定點(diǎn);
(2)由(1)知直線l恒過(guò)定點(diǎn)A,當(dāng)直線l垂直于直線PA時(shí),點(diǎn)P到直線l的距離最大,利用點(diǎn)斜式求直線方程即可.
試題解析:
(1)證明:直線l的方程可化為 a(2x+y+1)+b(-x+y-1)=0,
由,
得,所以直線l恒過(guò)定點(diǎn).
(2)由(1)知直線l恒過(guò)定點(diǎn)A,
當(dāng)直線l垂直于直線PA時(shí),點(diǎn)P到直線l的距離最大.
又直線PA的斜率,所以直線l的斜率kl=-.
故直線l的方程為,
即15x+24y+2=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設(shè)命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=xlnx,g(x)=x3+ax2﹣x+2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(3)對(duì)一切的x,2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列結(jié)論的正誤(正確的打“√”,錯(cuò)誤的打“×”).
()在增函數(shù)與減函數(shù)的定義中,可以把“任意兩個(gè)自變量”改為“存在兩個(gè)自變量”._____
()函數(shù)的單調(diào)遞減區(qū)間是._____
()所有的單調(diào)函數(shù)都有最值._______
()與表示同一個(gè)集合.______
()已知定義在上的函數(shù)的圖象是連續(xù)不斷的,當(dāng)時(shí),則方程至少有一個(gè)實(shí)數(shù)解._______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2﹣an , n∈N* , 設(shè)函數(shù)f(x)=log x,數(shù)列{bn}滿足bn=f(an),記{bn}的前n項(xiàng)和為T(mén)n . (Ⅰ)求an及Tn;
(Ⅱ)記cn=anbn , 求cn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x2+bx﹣1(b∈R).
(1)若函數(shù)y=f(x)在[1,+∞)上單調(diào),求b的取值范圍;
(2)若函數(shù)y=|f(x)|﹣2有四個(gè)零點(diǎn),求b的取值范圍;
(3)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),求g(b)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1時(shí)有極值0.
(1)求常數(shù) a,b的值;
(2)方程f(x)=c在區(qū)間[﹣4,0]上有三個(gè)不同的實(shí)根時(shí),求實(shí)數(shù)c的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形ABCD的三個(gè)頂點(diǎn)的坐標(biāo)為A(﹣1,5),B(﹣2,﹣1),C(2,3).
(1)求平行四邊形ABCD的頂點(diǎn)D的坐標(biāo);
(2)在△ACD中,求CD邊上的高所在直線方程;
(3)求四邊形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com