分析 (1)設(shè)數(shù)列{an}的公差為d(d≠0),由題可知,a1•a13=a42,求出d,再根據(jù)等差數(shù)列的前n項(xiàng)和公式即可求出;
(2)$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),根據(jù)裂項(xiàng)求和即可求出答案.
解答 解:(1)設(shè)數(shù)列{an}的公差為d(d≠0),由題可知,a1•a13=a42,
即3(3+12d)=(3+3d)2,解得d=2,
則an=3+(n-1)×2=2n+1,
(2)Sn=$\frac{n(3+2n+1)}{2}$=n(n+2),
則$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
則Tn=$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+$\frac{1}{n(n+2)}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$),
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2(n+1)}$-$\frac{1}{2(n+2)}$,
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$
點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)和前n項(xiàng)和公式,以及裂項(xiàng)求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x+$\frac{3}{5}$)2+(y-$\frac{9}{5}$)2=$\frac{19}{5}$ | B. | (x-$\frac{3}{5}$)2+(y-$\frac{9}{5}$)2=$\frac{19}{5}$ | C. | (x-$\frac{3}{5}$)2+(y+$\frac{9}{5}$)2=$\frac{19}{5}$ | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5份 | B. | 10份 | C. | 15份 | D. | 20份 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5,10,15,20,25 | B. | 3,13,23,33,43 | C. | 1,2,3,4,5 | D. | 2,4,8,16,32 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com