11.下列各式中正確的個數(shù)是(  )
①(x7)′=7x6;    ②(x-1)′=x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;
⑥(cos2)′=-sin2.
A.3B.4C.5D.6

分析 根據(jù)基本導數(shù)公式求導即可.

解答 解:①(x7)′=7x6;    ②(x-1)′=-x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;⑥(cos2)′=0,
故正確的個數(shù)為4個,
故選:B

點評 本題考查了基本導數(shù)公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a,b,c∈(0,+∞),則下列三個數(shù)$a+\frac{4}$,$b+\frac{9}{c}$,$c+\frac{16}{a}$( 。
A.都大于6B.至少有一個不大于6
C.都小于6D.至少有一個不小于6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在用反證法證明“已知p3+q3=2,求證:p+q≤2”時的反設為p+q>2,得出的矛盾為(q-1)2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在梯形PMNQ中,PQ∥MN,對角線PN和MQ相交于點O,并把梯形分成四部分,記這四部分的面積分別為S1,S2,S3,S4.試判斷S1+S2和S3+S4的大小關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若x>1,那么1og2x+31ogx4的最小值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊長分別為a、b、c,且a•cosB+b•cosA=2c•cosB.
(1)求角B
(2)若$M=sinA({\sqrt{3}cosA-sinA})$,求M的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.若方程x2+y2+2mx-2y+m2+5m=0表示圓,求:
(1)實數(shù)m的取值范圍;
(2)圓心坐標和半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.給出下面類比推理命題(其中R為實數(shù)集,C為復數(shù)集),正確的是(  )
A.若a,b∈R,則a-b>0⇒a>b,推出:若a,b∈C,則a-b>0⇒a>b
B.若a,b∈R,則a2+b2=0⇒a=b=0,推出:若a,b∈C,則a2+b2=0⇒a=b=0
C.若a,b∈R,則a-b=0⇒a=b,推出:若a,b∈C,則a-b=0⇒a=b
D.若x∈R,則|x|<1⇒-1<x<1,推出:若x∈C,則|x|<1⇒-1<x<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.計算:$\root{5}{2}$×(4${\;}^{-\frac{2}{5}}$)-1+lg$\sqrt{1000}$-sin270°=$\frac{9}{2}$.

查看答案和解析>>

同步練習冊答案