2.平面上有n個圓,其中每兩個都相交于兩點,每三個都無公共點,它們將平面分成f(n) 塊區(qū)域,有f(1)=2,f(2)=4,f(3)=8,則f(n)的表達(dá)式為f(n)=n2-n+2.

分析 根據(jù)題意,分析可得,f(n)-f(n-1)=2×(n-1),進(jìn)而可得f(3)-f(2)=2×2,f(4)-f(3)=2×3,…f(n)-f(n-1)=2×(n-1),將這些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),進(jìn)而可得f(n),即可得答案.

解答 解:分析可得,n-1個圓可以將平面分為f(n-1)個區(qū)域,n個圓可以將平面分為f(n)個區(qū)域,
增加的這個圓即第n個圓與每個圓都相交,可以多分出2(n-1)個區(qū)域,
即f(n)-f(n-1)=2×(n-1),
則有f(3)-f(2)=2×2,
f(4)-f(3)=2×3,
f(5)-f(4)=2×4,
f(6)-f(5)=2×5,

f(n)-f(n-1)=2×(n-1),
將這些式子相加可得:f(n)-f(2)=2×2+2×3+2×4+…+2×n=n(n+1),
f(n)=2+(n-1)n=n2-n+2
故答案為f(n)=n2-n+2.

點評 本題主要考查歸納推理的運用,關(guān)鍵要根據(jù)題意,分析出每增加一個圓,可以多分出幾個區(qū)域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列結(jié)論:
①若y=cosx,y′=-sinx;      ②若y=-$\frac{1}{\sqrt{x}}$,y′=$\frac{1}{2x\sqrt{x}}$;③若f(x)=$\frac{1}{{x}^{2}}$,f′(3)=-$\frac{2}{27}$;   ④若y=3,則y′=0.
正確個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且以原點為圓心,橢圓的焦距為直徑的圓與直線x•sinθ+y•cosθ-1=0相切(θ為常數(shù)).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)如圖,若橢圓C的左、右焦點分別為F1,F(xiàn)2,過F2的直線l與橢圓分別交于兩點M、N,求$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等比數(shù)列{an}中,a2=2,a6=8,則a3a4a5=(  )
A.±64B.64C.32D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={1,3,m},集合B={m2,1},且A∪B=A,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某三棱錐的三視圖如圖所示,其中俯視圖是正方形,則該三棱錐最長棱的長是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=2x2+alnx,若對任意兩個不等的正數(shù)x1,x2(x1>x2),都有f(x1)-f(x2)>8(x1-x2)成立,則實數(shù)a的取值范圍是( 。
A.a≥4B.a≥3C.a≥2D.以上答案均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a,b是實數(shù),則“l(fā)og2a>log2b”是“($\frac{1}{2}$)a>($\frac{1}{2}$)b”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.根據(jù)歷年氣象統(tǒng)計資料知,某地區(qū)某日吹東風(fēng)的概率為$\frac{1}{3}$,下雨的概率為$\frac{2}{5}$,既吹東風(fēng)又下雨的概率為$\frac{1}{5}$.現(xiàn)已知該日吹東風(fēng),則該日下雨的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案