已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設(shè).
① 當(dāng)時,對任意,都有成立,求的最大值;
② 設(shè)的導(dǎo)函數(shù).若存在,使成立,求的取值范圍.
(1)極大值是e-1,極小值
(2)①-1-e-1 ②(-1,+∞)
【解析】(1)當(dāng)a=2,b=1時,f (x)=(2+)ex,定義域為(-∞,0)∪(0,+∞).
所以f ′(x)=ex
令f ′(x)=0,得x1=-1,x2=,列表
x | (-∞,-1) | -1 | (-1,0) | (0, ) | (,+∞) | |
f ′(x) | - | - | ||||
f (x) | ↗ | 極大值 | ↘ | ↘ | 極小值 | ↗ |
由表知f (x)的極大值是f (-1)=e-1,f (x)的極小值是f ()=
(2)① 因為g (x)=(ax-a)ex-f (x)=(ax--2a)ex,
當(dāng)a=1時,g (x)=(x--2)ex.
因為g (x)≥1在x∈(0,+∞)上恒成立,
所以b≤x2-2x-在x∈(0,+∞)上恒成立. 記h(x)=x2-2x- (x>0),則h′(x)=.
當(dāng)0<x<1時,h′(x)<0,h(x)在(0,1)上是減函數(shù);
當(dāng)x>1時,h′(x)>0,h(x)在(1,+∞)上是增函數(shù);
所以h(x)min=h(1)=-1-e-1;所以b的最大值為-1-e-1. ②因為g (x)=(ax--2a)ex,所以g ′(x)=(+ax--a)ex.
由g (x)+g′(x)=0,得(ax--2a)ex+(+ax--a)ex=0,
整理得2ax3-3ax2-2bx+b=0.
存在x>1,使g (x)+g ′(x)=0成立.
等價于存在x>1,2ax3-3ax2-2bx+b=0成立.
因為a>0,所以=.
設(shè)u(x)= (x>1),則u′(x)=.
因為x>1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函數(shù),所以u(x)>u(1)=-1,
所以>-1,即的取值范圍為(-1,+∞)
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)理科二項式定理與性質(zhì)(解析版) 題型:選擇題
展開式中的常數(shù)項???( )
A.80 B.-80 C.40 D.-40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文空間線面平行、面面平行、線面垂直、面面垂直(解析版) 題型:選擇題
設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是( )
A.若α⊥β,m?α,n?β,則m⊥n
B.若α∥β,m?α,n?β,則m∥n
C.若m⊥n,m?α,n?β,則α⊥β
D.若m⊥α,m∥n,n∥β,則α⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:填空題
如圖,AB是⊙O的一條切線,切點為B,ADE、CFD都是⊙O的割線,AC=AB.
(1)證明:AC2=AD·AE
(2)證明:FG∥AC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
某校高一某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,其可見部分如下,據(jù)此解答如下問題:
(1)計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分數(shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份試卷的分數(shù)在之間的概率;
(3)根據(jù)頻率分布直方圖估計這次測試的平均成績.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科預(yù)測題(解析版) 題型:解答題
已知函數(shù)f(x)=ex+2x2—3x
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2) 當(dāng)x ≥1時,若關(guān)于x的不等式f(x)≥ax恒成立,求實數(shù)a的取值范圍;
(3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科集合的表示、集合的運算、集合間的運算關(guān)系(解析版) 題型:選擇題
已知集合,,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科選擇題專項訓(xùn)練(解析版) 題型:選擇題
已知平面向量,滿足,,與的夾角為,若,則實數(shù)的值為( )
A.1 B. C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科解答題前三題(解析版) 題型:解答題
如圖,已知四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC=3,側(cè)面PBC⊥底面ABCD,O是BC的中點.
(1)求證:DC∥平面PAB;
(2)求四棱錐P﹣ABCD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com