由某種設(shè)備的使用年限(年)與所支出的維修費(萬元)的數(shù)據(jù)資料算得如下結(jié)果,,,.
(1)求所支出的維修費y對使用年限x的線性回歸方程;
(2)①判斷變量x與y之間是正相關(guān)還是負相關(guān);
②當使用年限為8年時,試估計支出的維修費是多少.
(附:在線性回歸方程中,),,其中,為樣本平均值.)

(1);(2)變量之間是正相關(guān),萬元.

解析試題分析:本題主要考查線性回歸方程、變量間的正相關(guān)和負相關(guān)的判斷等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計算能力.第一問,利用已知的數(shù)值及公式先計算,再利用計算,從而得到線性回歸方程;第二問,①在中,當時,變量x與y之間是正相關(guān),當時,變量x與y之間是負相關(guān),本題是正相關(guān);②使用年限即x的值,而維修費用是y的值,代入回歸方程中求函數(shù)值y即可.
(1)∵,∴
                   3分
                         5分
∴線性回歸方程.                              6分
(2)①由(1)知,∴變量之間是正相關(guān).                  9分
②由(1)知,當時,(萬元),即使用年限為年時,支出的維修費約是萬元.
12分
考點:線性回歸方程、變量間的正相關(guān)和負相關(guān)的判斷.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某班主任對全班50名學(xué)生的積極性和對待班級工作的態(tài)度進行了調(diào)查,
統(tǒng)計數(shù)據(jù)如下表所示:

 
積極參加班級工作
 不太積極參加班級工作
合計
學(xué)習積極性高
      18
       7
 25
學(xué)習積極性一般
       6
       19
 25
合計
      24
       26
 50
 
試運用獨立性檢驗的思想方法分析:學(xué)生的學(xué)習積極性與對待班級的態(tài)度是否有關(guān)系?

2

 
說明理由。

附:K2=
P(K2≥k0 )
0.10
0.05
0.025
0.010
0.005
0.001
   k0
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

近年來,我國很多城市都出現(xiàn)了嚴重的霧霾天氣.為了更好地保護環(huán)境,2012年國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標準》,其中規(guī)定:居民區(qū) 的PM2.5的年平均濃度不得超過35微克/立方米.某城市環(huán)保部門在2014年1月1日到 2014年3月31日這90天對某居民區(qū)的PM2. 5平均濃度的監(jiān)測數(shù)據(jù)統(tǒng)計如下:

組別
 PM2.5濃度(微克/立方米)
頻數(shù)(天)
第一組
(0,35]
24
第二組
(35,75]
48
第三組
(75,115]
12
第四組
>115
6
 
(1)在這天中抽取天的數(shù)據(jù)做進一步分析,每一組應(yīng)抽取多少天?
(2)在(I)中所抽取的樣本PM2. 5的平均濃度超過75(微克/立方米)的若干天中,隨 機抽取2天,求至少有一天平均濃度超過115(微克/立方米)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品的廣告費支出z與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):

若廣告費支出z與銷售額y回歸直線方程為多一6.5z+n(n∈R).
(1)試預(yù)測當廣告費支出為12萬元時,銷售額是多少?
(2)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校高一、高二、高三的三個年級學(xué)生人數(shù)如下表:

按年級分層抽樣的方法評選優(yōu)秀學(xué)生50人,其中高三有10人.
(1)求z的值;
(2)用分層抽樣的方法在高一學(xué)生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校高一年學(xué)生在某次數(shù)學(xué)單元測試中,成績在的頻數(shù)分布表如下:

分數(shù)



頻數(shù)
60
20
20
 
(1)用分層抽樣的方法從成績在的同學(xué)中共抽取人,其中成績在的有幾人?
(2)從(1)中抽出的人中,任取人,求成績在中各有人的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照,,,,的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).
頻率分布直方圖                           莖葉圖

(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取2名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的2名同學(xué)來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下莖葉圖記錄了甲,乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績(滿分為100分).乙組記錄中有一個數(shù)字模糊,無法確認,假設(shè)這個數(shù)字具有隨機性,并在圖中以a表示.

(1)若甲,乙兩個小組的數(shù)學(xué)平均成績相同,求a的值.
(2)求乙組平均成績超過甲組平均成績的概率.
(3)當a=2時,分別從甲,乙兩組同學(xué)中各隨機選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績之差的絕對值為2分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從發(fā)生汽車碰撞事故的司機中抽取2 000名司機.根據(jù)他們的血液中是否含有酒精以及他們是否對事故負有責任.將數(shù)據(jù)整理如下:

 
有責任
無責任
合計
有酒精
650
150
800
無酒精
700
500
1 200
合計
1 350
650
2 000
那么,司機對事故負有責任與血液中含有酒精是否有關(guān)系?

查看答案和解析>>

同步練習冊答案