分析:根據(jù)題中條件,可以先判斷出函數(shù)f(x)在R上單調(diào)遞減,再結(jié)合分段函數(shù)的解析式,要每一段都是減函數(shù),且分界點(diǎn)時(shí)左段函數(shù)的函數(shù)值要大于等于右段函數(shù)的函數(shù)值,列出不等關(guān)系,求解即可得到a的取值范圍.
解答:解:∵對(duì)任意x
1≠x
2都有
<0 成立,
∴x
1-x
2與f(x
1)-f(x
2)異號(hào),
根據(jù)函數(shù)單調(diào)性的定義,可知f(x)在R上是單調(diào)遞減函數(shù),
∵函數(shù)
f(x)=,
∴
| 3a-1<0 | 0<a<1 | (3a-1)×1+4a≥loga1 |
| |
,解得
<a<,
∴a的取值范圍是
<a<.
故答案為:
<a<.
點(diǎn)評(píng):本題考查了函數(shù)單調(diào)性的判斷與證明,注意一般單調(diào)性的證明選用定義法證明,證明的步驟是:設(shè)值,作差,化簡(jiǎn),定號(hào),下結(jié)論.對(duì)于分段函數(shù)的問(wèn)題,一般選用分類討論和數(shù)形結(jié)合的思想方法進(jìn)行求解.屬于中檔題.