已知函數(shù)f(x)=
(3a-1)x+4a,x<1
logax,x≥1
滿足對(duì)任意x1≠x2都有
f (1)-f(2)
x1-x2
<0
 成立,則a的取值范圍是
1
7
<a<
1
3
1
7
<a<
1
3
分析:根據(jù)題中條件,可以先判斷出函數(shù)f(x)在R上單調(diào)遞減,再結(jié)合分段函數(shù)的解析式,要每一段都是減函數(shù),且分界點(diǎn)時(shí)左段函數(shù)的函數(shù)值要大于等于右段函數(shù)的函數(shù)值,列出不等關(guān)系,求解即可得到a的取值范圍.
解答:解:∵對(duì)任意x1≠x2都有
f (1)-f(2)
x1-x2
<0
 成立,
∴x1-x2與f(x1)-f(x2)異號(hào),
根據(jù)函數(shù)單調(diào)性的定義,可知f(x)在R上是單調(diào)遞減函數(shù),
∵函數(shù)f(x)=
(3a-1)x+4a,x<1
logax,x≥1
,
3a-1<0
0<a<1
(3a-1)×1+4a≥loga1
,解得
1
7
<a<
1
3
,
∴a的取值范圍是
1
7
<a<
1
3

故答案為:
1
7
<a<
1
3
點(diǎn)評(píng):本題考查了函數(shù)單調(diào)性的判斷與證明,注意一般單調(diào)性的證明選用定義法證明,證明的步驟是:設(shè)值,作差,化簡(jiǎn),定號(hào),下結(jié)論.對(duì)于分段函數(shù)的問(wèn)題,一般選用分類討論和數(shù)形結(jié)合的思想方法進(jìn)行求解.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)
,
求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
,
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|x-1|-a
1-x2
是奇函數(shù).則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-2-x2x+2-x

(1)求f(x)的定義域與值域;
(2)判斷f(x)的奇偶性并證明;
(3)研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x-1x+a
+ln(x+1)
,其中實(shí)數(shù)a≠1.
(1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案