10.已知一個(gè)空心密閉(表面厚度忽略不計(jì))的正四面體工藝品的棱長(zhǎng)為$3\sqrt{6}$,若在該工藝品內(nèi)嵌入一個(gè)可以在其內(nèi)部任意轉(zhuǎn)動(dòng)的正方體,則正方體棱長(zhǎng)的最大值為$\sqrt{3}$.

分析 在一個(gè)棱長(zhǎng)為$3\sqrt{6}$的正四面體紙盒內(nèi)放一個(gè)正方體,并且能使正方體在紙盒內(nèi)任意轉(zhuǎn)動(dòng),說明正方體在正四面體的內(nèi)切球內(nèi),求出內(nèi)切球的直徑,就是正方體的對(duì)角線的長(zhǎng),然后求出正方體的棱長(zhǎng).

解答 解:設(shè)球的半徑為:r,由正四面體的體積得:
4×$\frac{1}{3}$×r×$\frac{\sqrt{3}}{4}$×($3\sqrt{6}$)2=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×($3\sqrt{6}$)2×$\sqrt{(3\sqrt{6})^{2}-(\frac{2}{3}•\frac{\sqrt{3}}{2}•3\sqrt{6})^{2}}$,
所以r=$\frac{3}{2}$,
設(shè)正方體的最大棱長(zhǎng)為a,
∴3a2=9,
∴a=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題是中檔題,考查正四面體的內(nèi)接球的知識(shí),球的內(nèi)接正方體的棱長(zhǎng)的求法,考查空間想象能力,轉(zhuǎn)化思想,計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=xex.     
(1)求曲線f(x)在x=1處的切線方程;
(2)求f(x)的單調(diào)區(qū)間與極值.
(3)若方程ex=$\frac{a}{x}$有實(shí)數(shù)解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在直三棱柱ABC-A1B1C1中,C1C=CB=CA=2,AC⊥CB,D,E分別為棱C1C,B1C1的中點(diǎn).
(1)求二面角B-A1D-A的平面角的余弦值;
(2)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?若存在,確定點(diǎn)F的位置并證明結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩條平行直線l1:$\sqrt{3}$x-y+1=0與l2:$\sqrt{3}$x-y+3=0.
(1)若直線n與l1、l2都垂直,且與坐標(biāo)軸構(gòu)成的三角形的面積是2$\sqrt{3}$,求直線n的方程.
(2)若直線m經(jīng)過點(diǎn)($\sqrt{3}$,4),且被l1、l2所截得的線段長(zhǎng)為2,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題“?x∈R,|x|+x2≥0”的否定是(  )
A.?x0∈R,|x0|+x${\;}_{0}^{2}$≥0B.?x0∈R,|x0|+x${\;}_{0}^{2}$<0
C.?x∈R,|x|+x2<0D.?x∈R,|x|+x2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“直線l:y=kx+2k-1在坐標(biāo)軸上截距相等”是“k=-1”的( 。l件.
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知橢圓 C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左頂點(diǎn)為A1,右焦點(diǎn)為F2,過點(diǎn) F2作垂直于x軸的直線交橢圓C于M、N兩點(diǎn),直線 A1M的斜率為$\frac{1}{2}$
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若橢圓C的長(zhǎng)軸長(zhǎng)為4,點(diǎn)P(1,1),則在橢圓C上是否存在不重合兩點(diǎn)D,E,使$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OD}$+$\overrightarrow{OE}$)(O是坐標(biāo)原點(diǎn)),若存在,求出直線DE的方程,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求證2sinαcosβ=sin(α+β)+sin(α-β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
(1)求a1,a2,a3的值,并猜想an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案