如圖,已知橢圓:的離心率為,以橢圓的左頂點(diǎn)為圓心作圓:,設(shè)圓與橢圓交于點(diǎn)與點(diǎn).
(1)求橢圓的方程;
(2)求的最小值,并求此時(shí)圓的方程;
(3)設(shè)點(diǎn)是橢圓上異于,的任意一點(diǎn),且直線分別與軸交于點(diǎn),為坐標(biāo)原點(diǎn),
求證:為定值.
(1);(2),;(3)證明過(guò)程詳見(jiàn)解析.
解析試題分析:(1)先通過(guò)離心率求出,再通過(guò),然后寫(xiě)出橢圓方程;(2)先設(shè)出點(diǎn)的坐標(biāo),由于點(diǎn)在橢圓上,所以,找到向量坐標(biāo),根據(jù)點(diǎn)乘列出表達(dá)式,配方法找到表達(dá)式的最小值,得到點(diǎn)坐標(biāo),點(diǎn)在圓上,代入得到圓的半徑,就可以得到圓的方程;(3)設(shè)出點(diǎn)的坐標(biāo),列出直線的方程,因?yàn)橹本與軸有交點(diǎn),所以令,得到,所以,又因?yàn)辄c(diǎn)在橢圓上,得到方程,代入中,得到,所以.
試題解析:(1)依題意,得,,∴;
故橢圓的方程為 . 3分
(2)方法一:點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),設(shè),, 不妨設(shè).
由于點(diǎn)在橢圓上,所以. (*) 4分
由已知,則,,
所以
. 6分
由于,故當(dāng)時(shí),取得最小值為.
由(*)式,,故,又點(diǎn)在圓上,代入圓的方程得到.
故圓的方程為:. 8分
方法二:點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),故設(shè),
不妨設(shè),由已知,則
. 6分
故當(dāng)時(shí),取得最小值為,此時(shí),
又點(diǎn)在圓上,代入圓的方程得到.
故圓的方程為:. 8分
(3) 方法一:設(shè),則直線的方程為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:與正半軸、正半軸的交點(diǎn)分別為,動(dòng)點(diǎn)是橢圓上任一點(diǎn),求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若且,函數(shù),若對(duì)于,總存在使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:()上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為,左、右焦點(diǎn)分別為,,點(diǎn)是右準(zhǔn)線上任意一點(diǎn),過(guò)作直 線的垂線交橢圓于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線與直線的斜率之積是定值;
(3)點(diǎn)的縱坐標(biāo)為3,過(guò)作動(dòng)直線與橢圓交于兩個(gè)不同點(diǎn),在線段上取點(diǎn),滿足,試證明點(diǎn)恒在一定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過(guò)點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左右頂點(diǎn)分別為,離心率.過(guò)該橢圓上任一點(diǎn)作軸,垂足為,點(diǎn)在的延長(zhǎng)線上,且.
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)的軌跡的方程;
(3)設(shè)直線(點(diǎn)不同于)與直線交于點(diǎn),為線段的中點(diǎn),試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長(zhǎng),橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為-,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
動(dòng)點(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記點(diǎn)的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿足向量與共線,與共
線,且,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com