若x,y滿足約束條件
x≥0
y≥0
y+x≤4
,P為上述不等式組表示的平面區(qū)域,則:
(1)目標(biāo)函數(shù)z=y-2x的最小值為
 

(2)當(dāng)b從-8連續(xù)變化到
 
時(shí),動直線y-2x=b掃過P中的那部分區(qū)域的面積為
16
3
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:(1)作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
(2)作出不等式組對應(yīng)的平面區(qū)域,結(jié)合陰影部分的面積建立條件關(guān)系即可得到結(jié)論.
解答: 解:(1)由z=y-2x,得y=2x+z,
作出不等式對應(yīng)的可行域,
平移直線y=2x+z,
由平移可知當(dāng)直線y=2x+z經(jīng)過點(diǎn)A(4,0)時(shí),
直線y=2x+z的截距最小,此時(shí)z取得最值,
代入z=y-2x,得z=-2×4=-8,
即z=y-2x的最小值為-8.
(2)當(dāng)b=-8時(shí),直線y-2x=b經(jīng)過點(diǎn)A,
y+x=4
y-2x=b
,解得
x=
4-b
3
y=
8+b
3
,
則三角形的面積S=
1
2
×4×
8+b
3
=
16+2b
3
=
16
3

解得b=0,
故答案為:-8,0
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐D-ABC中,DA⊥底面ABC,底面ABC為等邊三角形,DA=4,AB=3,則三棱錐D-ABC的外接球體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(2nπ+a)=-
3
2
m(n∈Z),sin(
2
-α)=-
1
2
m(m≠0)
(1)求證:無論m為何值,f(α)=sin2α+cos2α-3總為定值;
(2)根據(jù)條件你能否求出m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|log3x2=0},集合B={x|x2-2ax+b=0},若B≠∅,且A∪B=A,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年,為了研究根治埃博拉病毒疫苗,醫(yī)務(wù)人員需進(jìn)入實(shí)驗(yàn)室完成某項(xiàng)具有高危險(xiǎn)的實(shí)驗(yàn),每次只派一個(gè)人進(jìn)去,且每個(gè)人只被派一次,工作時(shí)間不超過60分鐘,如果某人60分鐘不能完成實(shí)驗(yàn)則必須撤出,再派下一個(gè)人,現(xiàn)有甲、乙、丙三人可派,他們各自完成實(shí)驗(yàn)的概率分別為
1
2
、
2
3
、
4
5
,且假定各人能否完成實(shí)驗(yàn)相互獨(dú)立.
(1)求實(shí)驗(yàn)?zāi)鼙煌瓿傻母怕剩?br />(2)若規(guī)定最先派丙去,則以后按怎樣的先后順序派人,才比較合理(派出人員最少最合理),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a2-3a+2≤0,求
(2a-1)2
+
(5-2a)2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-2x
1+x
,函數(shù)y=g(x)為y=f-1(x-1)的反函數(shù),求g(x)的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(1-x2) 集合A={x|y=f(x)},B={y|y=f(x)},則圖中陰影部分表示的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=log3(x+1),設(shè)關(guān)于x的不等式f[x2+a(a+2)]≤f(2ax+2x)的解集為A,函數(shù)f(x)在[-8,8]上的值域?yàn)锽.若“x∈A”是“x∈B”的充分不必要條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案