12.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=$\sqrt{7}$,3sinA=$\sqrt{7}$sinB,cosC=$\frac{2\sqrt{7}}{7}$,則邊c=2.

分析 利用正弦定理化簡3sinA=$\sqrt{7}$sinB,可得3a=$\sqrt{7}$b,結(jié)合a=$\sqrt{7}$,可求b,進(jìn)而利用余弦定理可求c的值.

解答 解:∵3sinA=$\sqrt{7}$sinB,可得:3a=$\sqrt{7}$b,
∴由a=$\sqrt{7}$,可得:b=3,
∵cosC=$\frac{2\sqrt{7}}{7}$,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{7+9-2×\sqrt{7}×3×\frac{2\sqrt{7}}{7}}$=2.
故答案為:2.

點評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|2x-6≤2-2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.
(Ⅰ)寫出集合B的所有子集;
(Ⅱ)若A∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是某幾何體的三視圖,其正視圖、俯視圖均為直徑為2的半圓,則該幾何體的表面積為( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|x-a|+|x-3|.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{ln|x|}{{x}^{2}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax+lnx,a∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若g(x)=$\sqrt{x}$[f(x)-ax],且對任意x≥1,2$\sqrt{x}$•g′(x)-1≥$\frac{λx}{x+1}$恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=a|x-1|+|x-a|(a>0).
(1)當(dāng)a=2時,解不等式f(x)≤4;
(2)若f(x)≥1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=2$\sqrt{3}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,則$\overrightarrow{AC}$•$\overrightarrow{AD}$=(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$y=\frac{lnx}{x}$的導(dǎo)數(shù)為( 。
A.$y=\frac{1-lnx}{x^2}$B.$y=\frac{1+lnx}{x^2}$C.$y=\frac{lnx-1}{x^2}$D.$y=\frac{x+lnx}{x^2}$

查看答案和解析>>

同步練習(xí)冊答案