分析 利用正弦定理化簡3sinA=$\sqrt{7}$sinB,可得3a=$\sqrt{7}$b,結(jié)合a=$\sqrt{7}$,可求b,進(jìn)而利用余弦定理可求c的值.
解答 解:∵3sinA=$\sqrt{7}$sinB,可得:3a=$\sqrt{7}$b,
∴由a=$\sqrt{7}$,可得:b=3,
∵cosC=$\frac{2\sqrt{7}}{7}$,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{7+9-2×\sqrt{7}×3×\frac{2\sqrt{7}}{7}}$=2.
故答案為:2.
點評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3π | B. | 4π | C. | 5π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=\frac{1-lnx}{x^2}$ | B. | $y=\frac{1+lnx}{x^2}$ | C. | $y=\frac{lnx-1}{x^2}$ | D. | $y=\frac{x+lnx}{x^2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com