【題目】某周末,鄭州方特夢幻王國匯聚了八方來客. 面對該園區(qū)內(nèi)相鄰的兩個主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會有所不同. 某統(tǒng)計機構對園區(qū)內(nèi)的100位游客(這些游客只在兩個主題公園中二選一)進行了問卷調查. 調查結果顯示,在被調查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20人.

(1)根據(jù)題意,請將下面的列聯(lián)表填寫完整;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有99%的把握認為選擇哪個主題公園與年齡有關.

附參考公式與表:.

【答案】(1)見解析;(2)沒有99%的把握認為選擇哪個主題公園與年齡有關

【解析】

1)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表.2)計算的觀測值,由此判斷“沒有99%的把握認為選擇哪個主題公園與年齡有關”.

(1)根據(jù)題目中的數(shù)據(jù),列出列聯(lián)表如下:

選擇“西游傳說”

選擇“千古蝶戀”

總計

成年人

10

40

50

未成年人

20

30

50

總計

30

70

100

(2)的觀測值是.

因為,所以沒有99%的把握認為選擇哪個主題公園與年齡有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結束時,負的一方在下一局當裁判,假設每局比賽中,甲勝乙的概率為,甲勝丙、乙勝丙的概率都為,各局比賽的結果都相互獨立,第局甲當裁判.

1)求第局甲當裁判的概率;

2)記前局中乙當裁判的次數(shù)為,求的概率分布與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù)

(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方程

(2)利用(1)計算2002年和2006年糧食需求量的殘差;

(3)利用(1)中所求出的直線方程預測該地2012年的糧食需求量。

公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市出臺了相關政策:由政府協(xié)調,企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.某大學畢業(yè)生按照相關政策投資銷售一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月的銷售量y(單位:件)與銷售單價x(單位:元)之間的關系近似滿足一次函數(shù):

1)設他每月獲得的利潤為w(單位:元),寫出他每月獲得的利潤w與銷售單價x的函數(shù)關系.

2)相關部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果他想要每月獲得的利潤不少于3000元,那么政府每個月為他承擔的總差價的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年為我國改革開放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:

年齡段

人數(shù)(單位:人)

180

180

160

80

約定:此單位45歲59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會的觀眾.

(1)抽出的青年觀眾與中年觀眾分別為多少人?

(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關心民生大事,其余人熱衷關心民生大事.完成下列2×2列聯(lián)表,并回答能否有90%的把握認為年齡層與熱衷關心民生大事有關?

熱衷關心民生大事

不熱衷關心民生大事

總計

青年

12

中年

5

總計

30

(3)若從熱衷關心民生大事的青年觀眾(其中1人擅長歌舞,3人擅長樂器)中,隨機抽取2人上臺表演節(jié)目,則抽出的2 人能勝任的2人能勝任才藝表演的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次考試中某班級50名學生的成績統(tǒng)計如表,規(guī)定75分以下為一般,大于等于75分小于85分為良好,85分及以上為優(yōu)秀.

經(jīng)計算樣本的平均值,標準差. 為評判該份試卷質量的好壞,從其中任取一人,記其成績?yōu)?/span>,并根據(jù)以下不等式進行評判

;

;

評判規(guī)則:若同時滿足上述三個不等式,則被評為優(yōu)秀試卷;若僅滿足其中兩個不等式,則被評為合格試卷;其他情況,則被評為不合格試卷.

(1)試判斷該份試卷被評為哪種等級;

(2)按分層抽樣的方式從3個層次的學生中抽出10名學生,再從抽出的10名學生中隨機抽出4人進行學習方法交流,用隨機變量表示4人中成績優(yōu)秀的人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,設的定義域為.

1)求;

2)用定義證明上的單調性,并直接寫出上的單調性;

3)若對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,,為線段的垂直平分線,交與點上異于的任意一點.

的值;

判斷的值是否為一個常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)使得函數(shù)在定義域內(nèi)為增函數(shù);實數(shù)使得函數(shù)上存在兩個零點,且

分別求出條件中的實數(shù)的取值范圍;

甲同學認為“的充分條件”,乙同學認為“的必要條件”,請判斷兩位同學的說法是否正確,并說明理由.

查看答案和解析>>

同步練習冊答案