【題目】已知數(shù)列中,,且對任意的,,都有,則( )

A. B. C. D.

【答案】D

【解析】分析:令m=1,可得an+1﹣an=n+1,再利用累加法可得的通項,再利用裂項法得到==2(),從而可求得的值.

詳解:∵a1=1,且對任意的m,n∈N*,都有am+n=am+an+mn,

令m=1,則an+1=a1+an+n=an+n+1,

即an+1﹣an=n+1,

∴an﹣an﹣1=n(n≥2),

…,

a2﹣a1=2,

∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+(n﹣2)+…+3+2+1=,

==2(),

=2[(1﹣)+()+…+()+()+()]=2(1﹣)=,

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2)中,任選3人參加某省舉辦的我看中國改革開放三十年演講比賽活動.

(1)設所選3人中女生人數(shù)為ξ,求ξ的分布列;

(2)求男生甲或女生乙被選中的概率;

(3)男生甲被選中為事件A女生乙被選中為事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】退休年齡延遲是平均預期壽命延長和人口老齡化背景下的一種趨勢.某機構為了解某城市市民的年齡構成,按的比例從年齡在20~80歲(含20歲和80歲)之間的市民中隨機抽取600人進行調(diào)查,并將年齡按進行分組,繪制成頻率分布直方圖,如圖所示.規(guī)定年齡在歲的人為“青年人”,歲的人為“中年人”, 歲的人為“老年人”.

(Ⅰ)根據(jù)頻率分布直方圖估計該城市60歲以上(含60歲)的人數(shù),若每一組中的數(shù)據(jù)用該組區(qū)間的中點值來代表,試估算所調(diào)查的600人的平均年齡;

(Ⅱ)將上述人口分布的頻率視為該城市年齡在20~80歲的人口分布的概率,從該城市年齡在20~80歲的市民中隨機抽取3人,記抽到“老年人”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=

(1)寫出該函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)=-m恰有3個不同零點,求實數(shù)m的取值范圍;

(3)若n2-2bn+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】地震、海嘯、洪水、森林大火等自然災害頻繁出現(xiàn),緊急避險常識越來越引起人們的重視.某校為了了解學生對緊急避險常識的了解情況,從高一年級和高二年級各選取100名同學進行緊急避險常識知識競賽.圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學生成績按,分組,得到的頻率分布直方圖.

(Ⅰ)根據(jù)成績頻率分布直方圖分別估計參加這次知識競賽的兩個年級學生的平均成績;

(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認為“兩個年級學生對緊急避險常識的了解有差異”?

成績小于60分人數(shù)

成績不小于60分人數(shù)

合計

高一年級

高二年級

合計

附:

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實數(shù)).

(I)討論函數(shù)的單調(diào)性;

(II)若上的恒成立,求的范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①已知,“”是“”的充分條件;

②已知平面向量,“”是“”的必要不充分條件;

③已知,“”是“”的充分不必要條件;

④命題:“,使”的否定為:“,都有”.其中正確命題的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市舉辦數(shù)學知識競賽活動,共5000名學生參加,競賽分為初試和復試,復試環(huán)節(jié)共3道題,其中2道單選題,1道多選題,得分規(guī)則如下:參賽學生每答對一道單選題得2分,答錯得O分,答對多選題得3分,答錯得0分,答完3道題后的得分之和為參賽學生的復試成績.

(1)通過分析可以認為學生初試成績服從正態(tài)分布,其中,,試估計初試成績不低于90分的人數(shù);

(2)已知小強已通過初試,他在復試中單選題的正答率為,多選題的正答率為,且每道題回答正確與否互不影響.記小強復試成績?yōu)?/span>,求的分布列及數(shù)學期望.

附:,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合.

1)證明:若,則;

2)證明:若,則,并由此證明中的元素若滿足,則;

3)設,試求滿足的所有的可能值.

查看答案和解析>>

同步練習冊答案