設(shè)函數(shù)f(x)=
log2(x-1),x≥2
(
1
2
)x-1,x<2
,若f(x0)>1,則x0的取值范圍是
 
考點(diǎn):指、對(duì)數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:由f(x0)>1,得到兩個(gè)不等式組分別解之.
解答: 解:由題意,f(x0)>1等價(jià)于
log2(x-1)>1
x≥2
(
1
2
)x-1>1
x<2
,分別解得x>3和x<-1;
所以x0的取值范圍是(-∞,-1)∪(3,+∞);
故答案為:(-∞,-1)∪(3,+∞).
點(diǎn)評(píng):本題考查了對(duì)數(shù)不等式和指數(shù)不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,cosA=
3
5
,
(1)求cos2
A
2
-sin(B+C)的值;
(2)如果△ABC的面積為4,AB=2,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx+x2,曲y=f(x)線在點(diǎn)(1,f(1))處的切線方程為( 。
A、y=3x
B、y=3x-2
C、y=2x-1
D、y=2x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a1=2,a2=4,數(shù)列{bn}滿足:bn=an+1-an,bn+1=2bn+2,
(1)求證:數(shù)列{bn+2}是等比數(shù)列(要指出首項(xiàng)與公比)
(2)求數(shù)列{an}的通項(xiàng)公式.
(3)求數(shù)列{nan+2n2}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,若5<ak<8,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>b且a∈R,則下列不等式中一定成立的是(  )
A、a2>b2
B、ac>bc
C、a-c>b-c
D、ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,且an=2n-19,則Sn的最小值為(  )
A、9B、8C、-80D、-81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(2+x)-loga(2-x)(a>0且a≠1).
(1)試求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)解關(guān)于x的不等式f(x)≥loga(3x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c
(1)在△ABC中,a+b=
3
+
2
,A=60°,B=45°,求a,b;
(2)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案