設(shè)f(x)是定義在R的偶函數(shù),對(duì)任意xÎR,都有f(x-2)=f(x+2),且當(dāng)xÎ[-2, 0]時(shí), f(x)=.若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程恰有3個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )
A.(1, 2) | B.(2,+¥) | C.(1,) | D.(, 2) |
B
解析試題分析:畫出當(dāng)x∈[-2,0]時(shí),函數(shù)f(x)=的圖象(如圖).
∵f(x)是定義在R上的偶函數(shù),∴當(dāng)x∈[0,2]時(shí)的函數(shù)f(x)的圖象與當(dāng)x∈[-2,0]時(shí),函數(shù)f(x)圖象關(guān)于y軸對(duì)稱.
∵對(duì)任意x∈R,都有f(x+2)=f(2-x)成立,∴函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱.
根據(jù)以上的分析即可畫出函數(shù)y=f(x)在區(qū)間[-2,6]上的圖象.
當(dāng)0<a<1時(shí),可知不滿足題意,應(yīng)舍去;
當(dāng)a>1時(shí),畫出函數(shù)y=loga(x+2)的圖象.
若使函數(shù)y=f(x)與y=loga(x+2)=0在區(qū)間(-2,6]內(nèi)有3個(gè)實(shí)根,而在(-2,0)必有一個(gè)實(shí)根,只需在區(qū)間(0,6]內(nèi)恰有兩個(gè)不同的交點(diǎn)(即關(guān)于x的方程f(x)-loga(x+2)=0在區(qū)間(0,6]內(nèi)恰有兩個(gè)不同的實(shí)數(shù)根),則實(shí)數(shù)a滿足,loga(6+2)>3,
∴a3<8,∴a<2,又1<a,∴1<a<2.故a的取值范圍為1<a<2.故選B.
考點(diǎn):本題主要考查函數(shù)的奇偶性、周期性,指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)。
點(diǎn)評(píng):中檔題,此類題目在高考題中常常出現(xiàn),綜合性較強(qiáng),利用數(shù)形結(jié)合思想,提供分析圖形特征,形象直觀的使問題得解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)是連續(xù)的偶函數(shù),且當(dāng)時(shí),是單調(diào)函數(shù),則滿足的所有之和為( )
A. | B. | C.5 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
判斷下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為( )
(1),;
(2),;
(3),;
(4),;
(5),。
A.(1),(2) | B.(2),(3) | C.(4) | D.(3),(5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
定義在R上的奇函數(shù)在(0,+∞)上是增函數(shù),又,則不等式的解集為( )
A.(-3,0)∪(0,3) | B.(-∞,-3)∪(3,+∞) |
C.(-3,0)∪(3,+∞) | D.(-∞,-3)∪(0,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知函數(shù)y=x3-3x+c的圖像與x軸恰有兩個(gè)公共點(diǎn),則c=( )
A.-2或2 | B.-9或3 | C.-1或1 | D.-3或1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com