根據(jù)函數(shù)單調(diào)性的定義,證明函數(shù)f (x)=x3+1(,+∞)上是減函數(shù).

 

答案:
解析:

證法一:在(-∞,+∞)上任取x1,x2x1<x2                         

f (x2) -f (x1) == (x1x2) ()                  

x1<x2,

x1x2<0.                                                     

當(dāng)x1x2<0時,有= (x1+x2) 2x1x2>0;                     

當(dāng)x1x2≥0時,有>0;

f (x2)-f (x1)= (x1x2)()<0.    &nbsp;                   

即  f (x2) < f (x1)

所以,函數(shù)f(x)=-x3+1在(-∞,+∞)上是減函數(shù).                    

證法二:在(-∞,+∞)上任取x1x2,且x1<x2,                     

f (x2)-f (x1)=xx= (x1x2) ().                

x1<x2

x1x2<0.                                                   

x1,x2不同時為零,

xx>0.

又 ∵ xx>(xx)≥|x1x2|≥-x1x2

   ∴ >0,

   ∴  f (x2)-f (x1) = (x1x2) ()<0.                   

f (x2) < f (x1).

所以,函數(shù)f (x)=-x3+1在(-∞,+∞)上是減函數(shù).

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)函數(shù)單調(diào)性的定義,判斷f(x)=
axx2+1
(a≠0)在[1,+∞)上的單調(diào)性并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2
1+x1-x

(Ⅰ)求函數(shù)的定義域;
(Ⅱ)判斷函數(shù)的奇偶性;
(Ⅲ)根據(jù)函數(shù)單調(diào)性的定義,證明函數(shù)f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2
1+x1-x

(Ⅰ)寫出函數(shù)的定義域;函數(shù)的奇偶性
(Ⅱ)根據(jù)函數(shù)單調(diào)性的定義,證明函數(shù)f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2
x1-x

(Ⅰ)求函數(shù)的定義域;
(Ⅱ)根據(jù)函數(shù)單調(diào)性的定義,證明函數(shù)f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)y=
2x-4
(x≥2),求它的反函數(shù).
(2)根據(jù)函數(shù)單調(diào)性的定義,證明函數(shù)f(x)=-x2+1在區(qū)間[0,+∞)上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊答案