10.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.24B.48C.54D.72

分析 由三視圖還原為如圖所示的直視圖,即可得出.

解答 解:還原為如圖所示的直視圖,
$V=AD×{S_{△ABC}}-\frac{1}{3}({5-2}){S_{△ABC}}=\frac{1}{2}×3×4×5-\frac{1}{2}×3×4=24$.
故選:A.

點(diǎn)評(píng) 本題考查了棱柱與棱錐的三視圖及其體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$\begin{array}{l}f(x)=\left\{\begin{array}{l}{e^x}-1,({x<1})\\{x^3}-9{x^2}+24x-16,({x≥1})\end{array}\right.\end{array}$,則關(guān)于x的方程|f(x)|=a(a為實(shí)數(shù))根個(gè)數(shù)不可能為( 。
A.1B.3C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)$f(x)=2ax-\frac{1}{x}-({a+2})lnx({a≥0})$.
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a=1時(shí),若對(duì)于任意的x1,x2∈[1,4],都有$|{f({x_1})-f({x_2})}|<\frac{27}{4}-2mln2$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知i為虛數(shù)單位,a∈R,若(a+1)(a-1+i)是純虛數(shù),則a的值為(  )
A.-1或1B.1C.-1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\frac{{x}^{2}}{{e}^{|x|+1}}$(其中e為自然對(duì)數(shù)的底)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知R為實(shí)數(shù)集,集合A={x|x>0},B={x|x2-x-2>0},則A∩(∁RB)=( 。
A.(0,2]B.(-1,2)C.[-1,2]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知公比不為1的等比數(shù)列{an}的前5項(xiàng)積為243,且2a3為3a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿(mǎn)足bn=bn-1•log3an+2(n≥2且n∈N*),且b1=1,求數(shù)列$\left\{{\frac{(n-1)!}{{{b_{n+1}}}}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=x3+ln($\sqrt{{x}^{2}+1}$+x).且f($\frac{a+1}{a-1}$)-ln($\sqrt{2}$-1)<-1,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知正數(shù)x,y滿(mǎn)足x+y=1,則$\frac{4}{x+2}$$+\frac{1}{y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案