20.已知函數(shù)$\begin{array}{l}f(x)=\left\{\begin{array}{l}{e^x}-1,({x<1})\\{x^3}-9{x^2}+24x-16,({x≥1})\end{array}\right.\end{array}$,則關于x的方程|f(x)|=a(a為實數(shù))根個數(shù)不可能為( 。
A.1B.3C.5D.6

分析 判斷f(x)的單調性,計算f(x)的極值,作出y=|f(x)|的函數(shù)圖象,根據(jù)函數(shù)圖象得出方程|f(x)|=a的解的情況.

解答 解:當x<1時,f(x)為增函數(shù),且f(0)=0,
當x≥1時,f′(x)=3x2-18x+24,
令f′(x)=0得3x2-18x+24=0,解得x1=2,x2=4,
當1≤x<2時,f′(x)>0,當2<x<4時,f′(x)<0,當x>4時,f′(x)>0,
∴當x=2時,f(x)取得極大值f(2)=4,當x=4時,f(x)取得極小值f(4)=0,
做出y=f(x)的函數(shù)圖象如圖:

將x軸下方的圖象向上翻折得出y=|f(x)|的函數(shù)圖象如圖所示:

由圖象可知:
當a<0時,|f(x)|=a無解,
當a=0時,|f(x)|=a有3解,
當0<a<1時,|f(x)|=a有5解,
當1≤a<e-1時,|f(x)|=a有4解,
當e-1≤a<4時,|f(x)|=a有3解,
當a=4時,|f(x)|=a有2解,
當a>4時,|f(x)|=a有1解.
故選D.

點評 本題考查了函數(shù)單調性的判斷,函數(shù)零點的個數(shù)與函數(shù)圖象的關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.在銳角三角形ABC 中,角 A,B,C 的對邊分別為 a,b,c.若a=2bsinC,則tanA+tanB+tanC的最小值是(  )
A.4B.$3\sqrt{3}$C.8D.$6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知當x<1時,f(x)=(2-a)x+1;當x≥1時,f(x)=ax(a>0且a≠1).若對任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$成立,則a的取值范圍是(  )
A.(1,2)B.$(1,\frac{3}{2}]$C.$[\frac{3}{2},2)$D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知全集U=R,集合$A=\left\{{x|{2^x}>\frac{1}{2}}\right\},B=\left\{{x|{{log}_3}x<1}\right\}$,則A∩(∁UB)=( 。
A.(-1,+∞)B.[3,+∞)C.(-1,0)∪(3,+∞)D.(-1,0]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列命題中真命題是( 。
A.$?x∈({-∞,\frac{π}{4}}),tanx≤1$
B.設l,m表示不同的直線,α表示平面,若m∥l且m⊥α,則l∥α
C.利用計算機產生0和l之間的均勻隨機數(shù)m,則事件“3m-1≥0”發(fā)生的概率為$\frac{1}{3}$
D.“a>0,b>0”是“$\frac{a}+\frac{a}$≥2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.i為虛數(shù)單位,復數(shù)$\frac{3+i}{1-i}$的虛部是( 。
A.2iB.2C.-2iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.數(shù)學與自然、生活相伴相隨,無論是蜂的繁殖規(guī)律,樹的分枝,還是鋼琴音階的排列,當中都蘊含了一個美麗的數(shù)學模型Fibonacci(斐波那契數(shù)列):1,1,2,3,5,8,13,21…,這個數(shù)列前兩項都是1,從第三項起,每一項都等于前面兩項之和,請你結合斐波那契數(shù)列,嘗試解答下面的問題:小明走樓梯,該樓梯一共8級臺階,小明每步可以上一級或二級,請問小明的不同走法種數(shù)是( 。
A.20B.34C.42D.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.從六個數(shù)1,3,4,6,7,9中任取2個數(shù),則這兩個數(shù)的平均數(shù)恰好是5的概率為(  )
A.$\frac{1}{20}$B.$\frac{1}{15}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.24B.48C.54D.72

查看答案和解析>>

同步練習冊答案