(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。
(1)(2)

試題分析:(1)由題意可得圓的方程為直線與圓相切,

所以橢圓方程為 
(2)設(shè)



的值為
點(diǎn)評(píng):熟記橢圓中的關(guān)系式,并靈活應(yīng)用。注意橢圓中的關(guān)系式與雙曲線中的關(guān)系式的不同。此題屬于基礎(chǔ)題型。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知橢圓C:以雙曲線的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線=1的漸近線與圓(x-3)2+y2=r2(r>0)相切,則r=(   )
A.B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線上一點(diǎn)P到軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線與曲線有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知半徑為6的圓軸相切,圓心在直線上且在第二象限,直線過點(diǎn)
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓相交于兩點(diǎn)且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題,其中正確命題的序號(hào)是          (填序號(hào))。
(1)已知橢圓兩焦點(diǎn)為,則橢圓上存在六個(gè)不同點(diǎn),使得為直角三角形;
(2)已知直線過拋物線的焦點(diǎn),且與這條拋物線交于兩點(diǎn),則的最小值為2;
(3)若過雙曲線的一個(gè)焦點(diǎn)作它的一條漸近線的垂線,垂足為,為坐標(biāo)原點(diǎn),則;
(4)已知⊙則這兩圓恰有2條公切線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,F(xiàn)1和F2分別是雙曲線的兩個(gè)焦點(diǎn),A和B是以O(shè)為圓心,|OF1|為半徑的圓與該雙曲線左支的兩個(gè)交點(diǎn),且△F2AB是等邊三角形,則離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案