雙曲線=1的漸近線與圓(x-3)2+y2=r2(r>0)相切,則r=(   )
A.B.2C.3D.6
A

試題分析:由雙曲線方程可知,漸近線為,由漸近線與圓相切,圓心到直線的距離等于半徑得
點評:當雙曲線焦點在x軸時,漸近線為,焦點在y軸時,漸近線為,因此在求漸近線之前先要找準焦點位置,本題較易
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)過點作直線與拋物線相交于兩點,圓

(1)若拋物線在點處的切線恰好與圓相切,求直線的方程;
(2)過點分別作圓的切線,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

動圓經(jīng)過定點,且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過定點與曲線交于、兩點:
①若,求直線的方程;
②若點始終在以為直徑的圓內(nèi),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓經(jīng)過點,且其右焦點與拋物線的焦點F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過點與橢圓相交于A、B兩點,與拋物線相交于C、D兩點.求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的焦點坐標是 (   )
A.(–2,0),(2,0)B.(0,–2),(0,2)
C.(0,–4),(0,4)D.(–4,0),(4,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的一條漸近線的傾斜角為,離心率為,則的最小值為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓上的一動點,且與橢圓長軸兩頂點連線的斜率之積最小值為,則橢圓離心率為
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點,為橢圓上的動點.
(1)求橢圓的標準方程;
(2)若均不重合,設直線的斜率分別為,求的值。

查看答案和解析>>

同步練習冊答案