曲線C的極坐標(biāo)方程是ρ=1+cosθ,點(diǎn)A的極坐標(biāo)是(2,0),求曲線C在它所在的平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)一周而形成的圖形的周長.
【答案】
分析:先設(shè)P(ρ,θ)是曲線C上的任意一點(diǎn),由余弦定理求出|AP|有最大值,再結(jié)合圖形觀察得出曲線C在它所在的平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)一周而形成的圖形是一個(gè)圓,從而即可求出其周長.
解答:解:設(shè)P(ρ,θ)是曲線C上的任意一點(diǎn),
則|OP|=ρ=1+cosθ,由余弦定理,
得|AP|
2=|OP|
2+|OA|
2-2|OP|•|OA|cosθ
=(1+cosθ)
2+2
2,
當(dāng)
時(shí),|AP|有最大值為
,
將點(diǎn)A(2,0)代入曲線C的極坐標(biāo)方程,是滿足的,知點(diǎn)A在曲線C上,
所以曲線C在它所在的平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)一周而形成的圖形是以點(diǎn)A為圓心、
為半徑的圓,其周長為
.
點(diǎn)評(píng):本小題主要考查簡(jiǎn)單曲線的極坐標(biāo)方程、極坐標(biāo)方程的應(yīng)用、余弦定理等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.