給出下列結(jié)論:

   (1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;

   (2)在回歸分析中,可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;

   (3)在回歸分析中,可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適,帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高。

        其中結(jié)論正確的是          。(把所有正確結(jié)論的序號(hào)填上)

 

【答案】

 (1)(3)     

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別a,b,c,給出下列結(jié)論:
①A>B>C,則sinA>sinB>sinC;
②若
sinA
a
=
cosB
b
=
cosC
c
,△ABC為等邊三角形;
③必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;
④若a=40,b=20,B=25°,△ABC必有兩解.
其中,結(jié)論正確的編號(hào)為
①④
①④
(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌圖縣模擬)給出下列結(jié)論,其中正確結(jié)論的序號(hào)是
(2)(3)
(2)(3)

(1)y=tanx在其定義域上是增函數(shù);
(2)函數(shù)y=|sin(2x+
π
3
)|的最小正周期是
π
2
;
(3)函數(shù)y=cos(-x)的單調(diào)增區(qū)間是[-π+2kπ,2kπ](k∈Z);
(4)函數(shù)y=lg(sinx+
sin2x+1
)有無奇偶性不能確定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•成都二模)如圖,在半徑為l的球O中.AB、CD是兩條互相垂直的直徑,半徑OP⊥平面ABCD.點(diǎn)E、F分別為大圓上的劣弧
BP
、
AC
的中點(diǎn),給出下列結(jié)論:
①向量
OE
在向量
OB
方向上的投影恰為
1
2

②E、F兩點(diǎn)的球面距離為
3
;
③球面上到E、F兩點(diǎn)等距離的點(diǎn)的軌跡是兩個(gè)點(diǎn);
④若點(diǎn)M為大圓上的劣弧
AD
的中點(diǎn),則過點(diǎn)M且與直線EF、PC成等角的直線只有三條,其中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域是(0,+∞)的函數(shù)f(x)滿足;
(1)對(duì)任意x∈(0,+∞),恒有f(3x)=3f(x)成立;
(2)當(dāng)x∈(1,3]時(shí),f(x)=3-x.給出下列結(jié)論:
①對(duì)任意m∈Z,有f(3m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);
③存在n∈Z,使得f(3n+1)=0;
④“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”的充要條件是“?k∈Z,使得(a,b)⊆(3k,3k+1).”
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-
1-x2
,x∈[0,1]對(duì)于滿足0<x1<x2<1的任意x1,x2,給出下列結(jié)論
f(x2)-f(x1)
x2-x1
<0
              ②x2f(x1)<x1f(x2
f(x1)+f(x2)
2
> f(
x1+x2
2
)
     ④f(x)≤2x
其中正確結(jié)論的序號(hào)是
 
(填上所有正確說法的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案