【題目】西安市自2017年5月啟動(dòng)對(duì)“車不讓人行為”處罰以來(lái),斑馬線前機(jī)動(dòng)車搶行不文明行為得以根本改變,斑馬線前禮讓行人也成為了一張新的西安“名片”.
但作為交通重要參與者的行人,闖紅燈通行卻頻有發(fā)生,帶來(lái)了較大的交通安全隱患及機(jī)動(dòng)車通暢率降低,交警部門在某十字路口根據(jù)以往的檢測(cè)數(shù)據(jù),得到行人闖紅燈的概率約為0.4,并從穿越該路口的行人中隨機(jī)抽取了200人進(jìn)行調(diào)查,對(duì)是否存在闖紅燈情況得到列聯(lián)表如下:
30歲以下 | 30歲以上 | 合計(jì) | |
闖紅燈 | 60 | ||
未闖紅燈 | 80 | ||
合計(jì) | 200 |
近期,為了整頓“行人闖紅燈”這一不文明及項(xiàng)違法行為,交警部門在該十字路口試行了對(duì)闖紅燈行人進(jìn)行經(jīng)濟(jì)處罰,并從試行經(jīng)濟(jì)處罰后穿越該路口行人中隨機(jī)抽取了200人進(jìn)行調(diào)查,得到下表:
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
將統(tǒng)計(jì)數(shù)據(jù)所得頻率代替概率,完成下列問(wèn)題.
(Ⅰ)將列聯(lián)表填寫完整(不需寫出填寫過(guò)程),并根據(jù)表中數(shù)據(jù)分析,在未試行對(duì)闖紅燈行人進(jìn)行經(jīng)濟(jì)處罰前,是否有99.9%的把握認(rèn)為闖紅燈與年齡有關(guān);
(Ⅱ)當(dāng)處罰金額為10元時(shí),行人闖紅燈的概率會(huì)比不進(jìn)行處罰降低多少;
(Ⅲ)結(jié)合調(diào)查結(jié)果,談?wù)勅绾沃卫硇腥岁J紅燈現(xiàn)象.
參考公式: ,其中
參考數(shù)據(jù):
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.132 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ);(Ⅲ)詳見(jiàn)解析.
【解析】
(Ⅰ)利用已知條件填寫列聯(lián)表,并計(jì)算出的觀測(cè)值,即可確定有99.9%的把握認(rèn)為闖紅燈與年齡有關(guān).
(Ⅱ)計(jì)算得出進(jìn)行處罰元后,行人闖紅燈的概率,再與未進(jìn)行處罰前,行人闖紅燈的概率,比較可得降低了0.2.
(Ⅲ)有列聯(lián)表可得,30歲以上的闖紅燈的人數(shù)較多,可以針對(duì)歲以上人群開展“道路安全”宣傳教育;由(Ⅱ)可知,適當(dāng)?shù)奶幜P有利于降低闖紅燈的概率。
(Ⅰ)
30歲以下 | 30歲以上 | 合計(jì) | |
闖紅燈 | 20 | 60 | 80 |
未闖紅燈 | 80 | 40 | 120 |
合計(jì) | 100 | 100 | 200 |
有的把握說(shuō)闖紅燈與年齡有關(guān),
(Ⅱ)未進(jìn)行處罰前,行人闖紅燈的概率為;
進(jìn)行處罰元后,行人闖紅燈的概率為,降低了;
(Ⅲ)①根據(jù)調(diào)查數(shù)據(jù)顯示,行人闖紅燈與年齡有明顯關(guān)系,可以針對(duì)歲以上人群開展“道路安全”宣傳教育②由于處罰可以明顯降低行人闖紅燈的概率,可以進(jìn)行適當(dāng)處罰來(lái)降低行人闖紅燈的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是
(1)對(duì)于命題使得,則都有;
(2)已知,則
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,,所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動(dòng)點(diǎn)C的軌跡為曲線G.
(1)求曲線G的方程;
(2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,,,四邊形為矩形,平面平面,.
(1)證明:平面;
(2)設(shè)點(diǎn)在線段上運(yùn)動(dòng),平面與平面所成銳二面角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與橢圓交于不同的兩點(diǎn),.
(1)若線段的中點(diǎn)為,求直線的方程;
(2)若的斜率為,且過(guò)橢圓的左焦點(diǎn),的垂直平分線與軸交于點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線,過(guò)點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線于、兩點(diǎn),當(dāng)最小時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線L:()的焦點(diǎn)為F,過(guò)點(diǎn)的動(dòng)直線l與拋物線L交于A,B兩點(diǎn),直線交拋物線L于另一點(diǎn)C,直線的最小值為4.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)A作y軸的垂線m,則x軸上是否存在一點(diǎn),使得直線PB與直線m的交點(diǎn)恒在一條定直線上?若存在,求該點(diǎn)的坐標(biāo)及該定直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,四邊形是矩形,平面平面,,,,為的中點(diǎn),為線段上的一點(diǎn).
(1)求證:;
(2)若二面角的大小為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com