解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

某種產(chǎn)品的廣告支出x與銷(xiāo)售額y(單位:百萬(wàn)元)之間有如下的對(duì)應(yīng)關(guān)系

x

2

4

5

6

8

y

30

40

60

50

70

(1)假定xy之間具有線性相關(guān)關(guān)系,求回歸直線方程.

(2)若實(shí)際銷(xiāo)售額不少于60百萬(wàn)元,則廣告支出應(yīng)該不少于多少?

見(jiàn)解析


解析:

解:,

  ,

  ,.   回歸直線方程為

  (2)由回歸直線方程得

廣告費(fèi)用支出應(yīng)不少于6.54百萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱(chēng)有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

同步練習(xí)冊(cè)答案