【題目】一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為2的兩個全等的等腰直角三角形,則該幾何體的外接球的表面積是(

A.
B.4 π
C.12π
D. π

【答案】C
【解析】解:根據(jù)幾何體的三視圖,得該幾何體為一直四棱錐,其直觀圖如圖所示;

∵正視圖和側(cè)視圖是腰長為2的兩個全等的等腰直角三角形,
∴四棱錐的底面是正方形,且邊長為2,其中一條側(cè)棱SA⊥底面ABCD且棱長SA=2,
∴四棱錐的側(cè)棱SB=SD=2
∴四棱錐的側(cè)棱SC滿足SC2=SA2+AB2+AD2=22+22+22=12,
∴該幾何體的外接球的直徑為2R=SC,
它的表面積為4πR2=πSC2=12π.
故選:C.
根據(jù)幾何體的三視圖,得該幾何體為一直四棱錐,畫出直觀圖,求出該四棱錐的外接球的直徑即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園,種植桃樹,已知角A為120°.現(xiàn)在邊界AP,AQ處建圍墻,PQ處圍柵欄.

(1)若∠APQ=15°,AP與AQ兩處圍墻長度和為100( +1)米,求柵欄PQ的長;
(2)已知AB,AC的長度均大于200米,若水果園APQ面積為2500 平方米,問AP,AQ長各為多少時,可使三角形APQ周長最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點P(4,m)到焦點的距離為6.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線y=kx﹣2相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)據(jù)x1 , x2 , x3 , …,x100是杭州市100個普通職工的2016年10月份的收入(均不超過2萬元),設這100個數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上馬云2016年10月份的收入x101(約100億元),則相對于x、y、z,這101個月收入數(shù)據(jù)(
A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機抽取n個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)進行分組,得到如表頻率分布表:

分組

頻數(shù)

頻率

[39.95,39.97)

6

P1

[39.97,39.99)

12

0.20

[39.99,40.01)

a

0.50

[40.01,40.03)

b

P2

合計

n

1.00


(1)求a、b、n及P1、P2的值,并畫出頻率分布直方圖(結(jié)果保留兩位小數(shù));

(2)已知標準乒乓球的直徑為40.00mm,直徑誤差不超過0.01mm的為五星乒乓球,若這批乒乓球共有10000個,試估計其中五星乒乓球的數(shù)目;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間[39.99,40.01)的中點值是40.00)作為代表,估計這批乒乓球直徑的平均值和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖(b)所示.

(1)求證:BC⊥平面ACD;
(2)求幾何體D﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:y=2x+m與圓O:x2+y2=1相交于A,B兩個不同的點,且A(cosα,sinα),B(cosβ,sinβ).
(1)當△AOB面積最大時,求m的取值,并求出|AB|的長度.
(2)判斷sin(α+β)是否為定值;若是,求出定值的大;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分16分)已知數(shù)列)滿足, 其中,

1)當時,求關于的表達式,并求的取值范圍;

2)設集合

, ,求證: ;

是否存在實數(shù), ,使, , 都屬于?若存在,請求出實數(shù), ;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列.

(1)是否存在實數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請說明理由;

(2)若是數(shù)列的前項和,求滿足的所有正整數(shù).

查看答案和解析>>

同步練習冊答案