【題目】已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點P(4,m)到焦點的距離為6.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線y=kx﹣2相交于不同的兩點A、B,且AB中點橫坐標為2,求k的值.

【答案】解:(Ⅰ)由題意設(shè)拋物線方程為y2=2px,其準線方程為x=﹣ ,
∵P(4,m)到焦點的距離等于A到其準線的距離,
∴4+ ∴p=4
∴拋物線C的方程為y2=8x
(Ⅱ)由 消去y,得 k2x2﹣(4k+8)x+4=0
∵直線y=kx﹣2與拋物線相交于不同兩點A、B,則有k≠0,△=64(k+1)>0,解得k>﹣1且k≠0,
=2,
解得 k=2,或k=﹣1(舍去)
∴k的值為2.
【解析】(Ⅰ)由題意設(shè):拋物線方程為y2=2px,其準線方程為x=﹣ ,根據(jù)拋物線的大于可得:4+ ,進而得到答案.(Ⅱ)聯(lián)立直線與拋物線的方程得 k2x2﹣(4k+8)x+4=0,根據(jù)題意可得△=64(k+1)>0即k>﹣1且k≠0,再結(jié)合韋達定理可得k的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2Sn=3an﹣3,數(shù)列{bn}的前n項和Tn滿足 = +1且b1=1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前n項和Pn
(3)數(shù)列{Sn}中是否存在不同的三項Sp , Sq , Sr , 使這三項恰好構(gòu)成等差數(shù)列?若存在,求出p,q,r的關(guān)系;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是( )
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩艘輪船都要在某個泊位?6小時,假定它們在一晝夜的時間段中隨機到達,則這兩艘船中至少有一艘在停靠泊位時必須等待的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論中正確的個數(shù)有( )
(1)數(shù)列{an},{bn}都是等差數(shù)列,則數(shù)列{an+bn}也一定是等差數(shù)列;
(2)數(shù)列{an},{bn}都是等比數(shù)列,則數(shù)列{an+bn}也一定是等比數(shù)列;
(3)等差數(shù)列{an}的首項為a1 , 公差為d,取出數(shù)列中的所有奇數(shù)項,組成一個新的數(shù)列,一定還是等差數(shù)列;
(4) G為a,b的等比中項G2=ab.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若 , 為同一平面內(nèi)互不共線的三個單位向量,并滿足 + + = ,且向量 =x + +(x+ (x∈R,x≠0,n∈N+).
(1)求 所成角的大;
(2)記f(x)=| |,試求f(x)的單調(diào)區(qū)間及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司過去五個月的廣告費支出x與銷售額y(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

40

60

50

70

工作人員不慎將表格中y的第一個數(shù)據(jù)丟失.已知y對x呈線性相關(guān)關(guān)系,且回歸方程為 =6.5x+17.5,則下列說法:
①銷售額y與廣告費支出x正相關(guān);
②丟失的數(shù)據(jù)(表中 處)為30;
③該公司廣告費支出每增加1萬元,銷售額一定增加6.5萬元;
④若該公司下月廣告投入8萬元,則銷售額為70萬元.
其中,正確說法有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為2的兩個全等的等腰直角三角形,則該幾何體的外接球的表面積是(

A.
B.4 π
C.12π
D. π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點,焦點在x軸上的橢圓,離心率為 且過點( ,0),過定點C(﹣1,0)的動直線與該橢圓相交于A、B兩點.
(1)若線段AB中點的橫坐標是﹣ ,求直線AB的方程;
(2)在x軸上是否存在點M,使 為常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案