19.在長為5的線段AB上任取一點(diǎn)P,以AP為邊長作等邊三角形,則此三角形的面積介于$\sqrt{3}$和4$\sqrt{3}$的概率為$\frac{2}{5}$.

分析 設(shè)AP=x,用x表示正三角形面積為$\frac{\sqrt{3}}{4}{x}^{2}$,由$\sqrt{3}$<$\frac{\sqrt{3}}{4}{x}^{2}$<4$\sqrt{3}$,得到x范圍,利用幾何概型公式求概率.

解答 解:設(shè)AP=x,則正三角形面積為$\frac{\sqrt{3}}{4}{x}^{2}$,
若$\sqrt{3}$<$\frac{\sqrt{3}}{4}{x}^{2}$<4$\sqrt{3}$,則2<x<4,由幾何概型易得知p=$\frac{4-2}{5}=\frac{2}{5}$.
故答案為:$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查了幾何概型的概率求法;關(guān)鍵是明確測(cè)度,利用線段長度比求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若拋物線y2=2px的準(zhǔn)線經(jīng)過雙曲線${x^2}-\frac{y^2}{3}=1$的左焦點(diǎn),則實(shí)數(shù)p=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若$f(x)=\left\{\begin{array}{l}{({\frac{1}{3}})^x},x≤0\\{log_3}x,x>0\end{array}\right.$,則$f({f({\frac{1}{9}})})$=( 。
A.-2B.-3C.9D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.三棱錐P-ABC中,AB=AC=PB=PC=5,PA=BC若該三棱錐的四個(gè)頂點(diǎn)在同一個(gè)球面上,且球的表面積為34π,則棱PA的長為( 。
A.3B.$2\sqrt{3}$C.$3\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線C:y2=2px(p>0)與直線y=x+1相切.
(1)求拋物線C的方程;
(2)設(shè)A(x1,y1),B(x2,y2)是曲線C上兩個(gè)動(dòng)點(diǎn),其中x1≠x2,且x1+x2=4,線段AB的垂直平分線l與x軸相交于點(diǎn)Q,求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)y=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$的圖象,可將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個(gè)極值點(diǎn).
(1)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(2)若|x1|+|x2|=2,求b的最大值;
(3)設(shè)函數(shù)g(x)=f′(x)-a(x-x1),x∈(x1,x2),當(dāng)x2=a時(shí),求證:|g(x)≤$\frac{1}{12}$a(3a+2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.根據(jù)如下的樣本數(shù)據(jù):
廣告費(fèi)x/萬元4235
銷售額y/萬元49263954
得到的回歸方程為y=bx+a,其中b為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)為6萬元時(shí)的銷售額為( 。
A.63.6萬元B.65.5萬元C.67.7萬元D.72.0萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(1)若a=2,求證:f(x)在(0,+∞)上為增函數(shù);
(2)若不等式f(x)≥0的解集為[1,+∞),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案