9.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(1)若a=2,求證:f(x)在(0,+∞)上為增函數(shù);
(2)若不等式f(x)≥0的解集為[1,+∞),求實數(shù)a的取值范圍.

分析 (1)a=2時,x>0,求出f′(x)=$\frac{(x-1)^{2}}{x(x+1)^{2}}$≥0,由此能證明f(x)在(0,+∞)上為增函數(shù).
(Ⅱ)求出${f}^{'}(x)=\frac{{x}^{2}+2(1-a)x+1}{x(x+1)^{2}}$,x>0,由此根據(jù)a≤1,1<a≤2,a>2分類討論,利用導數(shù)性質(zhì)能求出實數(shù)a的取值范圍.

解答 證明:(1)∵a=2時,f(x)=lnx-$\frac{2x-2}{x+1}$,
∴x>0,${f}^{'}(x)=\frac{1}{x}-\frac{4}{(x+1)^{2}}$=$\frac{{x}^{2}-2x+1}{x(x+1)^{2}}$=$\frac{(x-1)^{2}}{x(x+1)^{2}}$≥0,
當且僅當x=1時,f′(x)=0,
∴f(x)在(0,+∞)上為增函數(shù).
解:(Ⅱ)∵函數(shù)$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$,
∴${f}^{'}(x)=\frac{{x}^{2}+2(1-a)x+1}{x(x+1)^{2}}$,x>0,
注意到f(1)=0,
①當a≤1時,則f′(x)=$\frac{{x}^{2}+2(1-a)x+1}{x(x+1)^{2}}$>0,∴f(x)在(0,+∞)上為增函數(shù),適合題意;
②當1<a≤2時,則△=4(a2-2a)≤0,則$f'(x)=\frac{{{x^2}+2(1-a)x+1}}{{x{{(x+1)}^2}}}≥0$,
當且僅當a=2,x=1時,取等號,則f(x)在(0,+∞)上為增函數(shù),適合題意;
③當a>2時,則△=4(a2-2a)>0,
則f′(x)=$\frac{{x}^{2}+2(1-a)x+1}{x(x+1)^{2}}$=0有兩個實根${x}_{1}=a-1-\sqrt{{a}^{2}-2a}$,${x}_{2}=a-1+\sqrt{{a}^{2}-2a}$,
且0<x1<a-1<x2,(a-1>1),
則f(x)在(0,x1],[x2,+∞)上為增函數(shù),在(x1,x2)上是減函數(shù),
1∈(x1,x2),f(1)=0,不適合題意.
綜上:實數(shù)a的取值范圍是(-∞,-2].

點評 本題考查函數(shù)為增函數(shù)的證明,考查實數(shù)的取值范圍的求法,考查導數(shù)的應用,考查推理論證能力、運算求解能力,考查轉(zhuǎn)化化歸思想、分類討論思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.在長為5的線段AB上任取一點P,以AP為邊長作等邊三角形,則此三角形的面積介于$\sqrt{3}$和4$\sqrt{3}$的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若函數(shù)f(x)在$({\frac{π}{2},π})$上單調(diào)遞減,則實數(shù)ω的取值范圍是( 。
A.$[{\frac{1}{4},\frac{5}{8}}]$B.$[{\frac{1}{2},\frac{5}{4}}]$C.$({0,\frac{1}{2}}]$D.$({0,\frac{1}{4}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若cosθ=$\frac{2}{3}$,θ為第四象限角,則cos(θ+$\frac{π}{4}$)的值為( 。
A.$\frac{\sqrt{2}+\sqrt{10}}{6}$B.$\frac{2\sqrt{2}+\sqrt{10}}{6}$C.$\frac{\sqrt{2}-\sqrt{10}}{6}$D.$\frac{2\sqrt{2}-\sqrt{10}}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知拋物線E:y2=4x的焦點為F,準線為l,過準線l與x軸的交點P且斜率為k的直線m交拋物線于不同的兩點A,B.
(1)若|AF|+|BF|=8,求線段AB的中點Q到準線的距離;
(2)E上是否存在一點M,滿足$\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PM}$?若存在,求出直線m的斜率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.從某學校對高二學生做的一項調(diào)查中發(fā)現(xiàn):在平時的模擬考試中,性格內(nèi)向的學生42人中有32人在考前心情緊張,性格外向的學生58人中有28人在考試前心情緊張.根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表,做出等高條形圖,并利用K2檢驗的方法,判斷能在犯錯誤的概率不超過多少的前提下認為考前心情緊張與性格類型有關(guān).
P(K2>k00.500.100.050.010.001
k00.4552.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知偶函數(shù)f(x)的定義域為R,若f(x-1)為奇函數(shù),且f(2)=3,則f(5)+f(6)的值為( 。
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.重慶某重點中學高一新生小王家在縣城A地,現(xiàn)在主城B地上學.周六小王的父母從早上8點從家出發(fā),駕車3小時到達主城B地,期間由于交通等原因,小王父母的車所走的路程s(單位:km)與離家的時間t(單位:h)的函數(shù)關(guān)系為s(t)=-5t(t-13).達到主城B地后,小王父母把車停在B地,在學校陪小王玩到16點,然后開車從B地以60km/h的速度沿原路返回.
(1)求這天小王父母的車所走路程s(單位:km)與離家時間t(單位:h)的函數(shù)解析式;
(2)在距離小王家60km處有一加油站,求這天小王父母的車途經(jīng)加油站的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=ax2-2x+1在[1,10]上單調(diào)遞減,則實數(shù)a的取值范圍為$({-∞,\frac{1}{10}}]$.

查看答案和解析>>

同步練習冊答案