精英家教網 > 高中數學 > 題目詳情

已知等差數列{an}的前n項和為Sn,若S7=14,則a3+a5的值為


  1. A.
    2
  2. B.
    4
  3. C.
    7
  4. D.
    8
B
分析:由等差數列的定義和性質可得a3+a5 =2a4,再由S7=14,求得 a4 的值,即可得到a3+a5的值.
解答:由等差數列的定義和性質可得a3+a5 =2a4,
再由S7=14==7•,可得 a4=2,
故a3+a5 =4,
故選B.
點評:本題主要考查等差數列的定義和性質,等差數列的通項公式,等差數列的前n項和公式,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等差數列{an},公差d不為零,a1=1,且a2,a5,a14成等比數列;
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足bn=an3n-1,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足a2=0,a6+a8=-10
(1)求數列{an}的通項公式;     
(2)求數列{|an|}的前n項和;
(3)求數列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知等差數列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若{an}為遞增數列,請根據如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案