(本小題兩小題,每題6分,滿分12分)
⑴對任意,試比較的大;
⑵已知函數(shù)的定義域?yàn)镽,求實(shí)數(shù)k的取值范圍。

。⑵

解析試題分析:(1)根據(jù)作差法比較大小是一種重要的方法。同時要注意差式的變形技巧的運(yùn)用。
(2)利用對數(shù)函數(shù)定義域?yàn)镽,說明了無論x取什么樣的數(shù),表達(dá)式真數(shù)恒大于零,那么說明二次函數(shù)開口向上,判別式小于零得到。
⑴∵,∴。
⑵∵的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0e/7/nuk002.png" style="vertical-align:middle;" />,即恒成立,∴,

考點(diǎn):本題主要考查配方法的運(yùn)用,為判定差是大于零還是小于零,配方法也是常用的方法之一,比差法是比較兩個代數(shù)式值的大小的常用方法,此題正是有效地利用了這兩個方法,使問題得到解決,同時也考查了函數(shù)的定義域?yàn)镽的理解和運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是要比較兩式的大小,可以運(yùn)用比差法,把兩個式子相減,可以得運(yùn)用配方法來比較與零的大小關(guān)系,要使得對數(shù)函數(shù)定義域?yàn)镽,說明了對數(shù)的真數(shù)部分恒大于零。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的最小值為1,且。
(1)求的解析式;  
(2)若在區(qū)間上不單調(diào),求實(shí)數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知奇函數(shù)
(1)求實(shí)數(shù)m的值,并在給出的直角坐標(biāo)系中畫出的圖象;
(2)若函數(shù)在區(qū)間[-1,-2]上單調(diào)遞增,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) 定義在上,對于任意實(shí)數(shù),恒有,且當(dāng)時,
(1)求證:,且當(dāng)時,
(2)求上的單調(diào)性.
(3)設(shè)集合,,且,
求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=
(1)求f(f(-2))的值;
(2)求f(a2+1)(a∈R)的值;
(3)當(dāng)-4≤x<3時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)已知函數(shù)的圖象經(jīng)過點(diǎn),其中
(1)求的值;
(2)求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值:1);
2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)    本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;
(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)
(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
(1)已知二次函數(shù),求的單調(diào)遞減區(qū)間。
(2)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案