【題目】如圖,為矩形的邊上一點(diǎn),且,將沿折起到,使得.



1)證明:平面平面;

2)若,求平面與平面所成的銳二面角的余弦值.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

1)取,的中點(diǎn),,連接,,,則,由題意可知,,從而證明平面,即根據(jù)線面垂直的判定定理證明平面,再利用線面垂直的性質(zhì)定理證明面面垂直即可.

2)以為原點(diǎn),,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系.求解平面的法向量,平面的法向量,再根據(jù),計(jì)算二面角余弦值,即可.

1)取的中點(diǎn),,連接,,,則

,

,.

在矩形

,平面,平面

平面

平面

為梯形的兩腰,必相交,平面,平面

平面

平面

平面平面.

2)∵,

.

過(guò)點(diǎn),交,則,,

為坐標(biāo)原點(diǎn),,,所在直線為,軸,建立如圖所示的空間直角坐標(biāo)系.

則各點(diǎn)坐標(biāo)為,,.

設(shè)平面的法向量為,則,

,即,,取,則

設(shè)平面的法向量為,則,

,即,,取,則,

即平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),其前n項(xiàng)的積為,記.

1)若數(shù)列為等比數(shù)列,數(shù)列為等差數(shù)列,求數(shù)列的公比.

2)若,,且

①求數(shù)列的通項(xiàng)公式.

②記,那么數(shù)列中是否存在兩項(xiàng),(s,t均為正偶數(shù),且),使得數(shù)列,,,成等差數(shù)列?若存在,求s,t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上不具有單調(diào)性.

(1)求實(shí)數(shù)的取值范圍;

(2)若的導(dǎo)函數(shù),設(shè),試證明對(duì)任意兩個(gè)不相等正數(shù),不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲所示的平面五邊形中,,,,,現(xiàn)將圖甲所示中的沿邊折起,使平面平面得如圖乙所示的四棱錐.在如圖乙所示中


1)求證:平面

2)求二面角的大。

3)在棱上是否存在點(diǎn)使得與平面所成的角的正弦值為?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,給出以下四種排序:①M,NT;②M,T,N;③NT,M;④TN,M.從中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,解答相應(yīng)的問(wèn)題.

已知等比數(shù)列中的各項(xiàng)都為正數(shù),,且__________依次成等差數(shù)列.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,求滿足的最小正整數(shù)n

注:若選擇多種排序分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,過(guò)點(diǎn)作的垂線交的延長(zhǎng)線于點(diǎn),.連結(jié)于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置.如圖2.

證明:直線平面

的中點(diǎn),的中點(diǎn),且平面平面求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,,四邊形和四邊形是兩個(gè)全等的等腰梯形.

(1)求證:四邊形為矩形;

(2)若平面平面,,,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos.

1)求曲線C和直線l的直角坐標(biāo)方程;

2)若直線l交曲線CA,B兩點(diǎn),交x軸于點(diǎn)P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在貫徹精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶甲、乙兩村各戶貧困戶,工作組對(duì)這戶村民的年收入、勞動(dòng)能力、子女受教育等情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)換為貧困指標(biāo),再將指標(biāo)分成、、五組,得到如下圖所示的頻率分布直方圖.若規(guī)定,則認(rèn)定該戶為“絕對(duì)貧困戶”,否則認(rèn)定該戶為“相對(duì)貧困戶”,且當(dāng)時(shí),認(rèn)定該戶為“低收入戶”,當(dāng)時(shí),認(rèn)定該戶為“亟待幫助戶”.已知此次調(diào)查中甲村的“絕對(duì)貧困戶”占甲村貧困戶的

1)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為“絕對(duì)貧困戶”數(shù)與村落有關(guān);

2)某干部決定在這兩村貧困指標(biāo)在、內(nèi)的貧困戶中,利用分層抽樣抽取戶,現(xiàn)從這戶中再隨機(jī)選取戶進(jìn)行幫扶,求所選戶中至少有一戶是“亟待幫助戶”的概率.

甲村

乙村

總計(jì)

絕對(duì)貧困戶

相對(duì)貧困戶

總計(jì)

附:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案