【題目】如圖甲所示的平面五邊形中,,,,,現(xiàn)將圖甲所示中的沿邊折起,使平面平面得如圖乙所示的四棱錐.在如圖乙所示中


1)求證:平面

2)求二面角的大;

3)在棱上是否存在點使得與平面所成的角的正弦值為?并說明理由.

【答案】1)證明見解析;(2;(3)存在,理由見解析.

【解析】

1)推導出ABAD,AB⊥平面PAD,ABPD,PDPA,由此能證明PD⊥平面PAB;

2)取AD的中點O,連結(jié)OP, OC,由OCOA,以為坐標原點,OC所在的直線為x軸,OA所在的直線為y軸建立空間直角坐標系,利用向量法能求出二面角A-PB-C的大小;

3)假設(shè)點M存在,其坐標為(x, y, z),BM與平面PBC所成的角為,則存在λ∈(0, 1),有,利用向量法能求出在棱PA上滿足題意的點M存在.

1)∵,,,

∵平面平面,平面平面,

平面,

又∵平面,

又∵,

平面

2)取的中點,連結(jié),,

由平面平面平面,

,

為坐標原點,所在的直線為軸,所在的直線為軸建立空間直角坐標系

如圖所示,

則易得,,,

設(shè)平面的法向量為,

,得,

,,

,

設(shè)二面角大小為,

,

∴二面角的大小

3)假設(shè)點存在,其坐標為與平面所成的角為,

則存在,有,

,,

,

從而化簡得,

解得

∴在棱上滿足題意的點存在.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了判斷英語詞匯量與閱讀水平是否相互獨立,某語言培訓機構(gòu)隨機抽取了100位英語學習者進行調(diào)查,經(jīng)過計算的觀測值為7,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是(

附:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

A.99%以上的把握認為英語詞匯量與閱讀水平無關(guān)

B.99.5%以上的把握認為英語詞匯量與閱讀水平有關(guān)

C.99.9%以上的把握認為英語詞匯量與閱讀水平有關(guān)

D.在犯錯誤的概率不超過1%的前提下,可以認為英語詞匯量與閱讀水平有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】確定函數(shù)的定義域、值域、單調(diào)區(qū)間、奇偶性、周期性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若,求的最大值;

(2)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著社會的發(fā)展與進步,傳播和存儲狀態(tài)已全面進入數(shù)字時代,以數(shù)字格式存儲,以互聯(lián)網(wǎng)為平臺進行傳輸?shù)囊魳贰獢?shù)字音樂已然融入了我們的日常生活.雖然我國音樂相關(guān)市場仍處在起步階段,但政策利好使音樂產(chǎn)業(yè)逐漸得到資本市場更多的關(guān)注.對比如下兩幅統(tǒng)計圖,下列說法正確的是( )

2011-2018年中國音樂產(chǎn)業(yè)投融資事件數(shù)量統(tǒng)計圖

2013-2021年中國錄制音樂營收變化及趨勢預(yù)測統(tǒng)計圖

A.2011~2018年我國音樂產(chǎn)業(yè)投融資事件數(shù)量逐年增長

B.2013~2018年我國錄制音樂營收與音樂產(chǎn)業(yè)投融資事件數(shù)量呈正相關(guān)關(guān)系

C.2016年我國音樂產(chǎn)業(yè)投融資事件的平均營收約為億美元

D.2013~2019年我國錄制音樂營收年增長率最大的是2018

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).(其中為自然對數(shù)的底數(shù))

1)當時,是否存在唯一的的值,使得?并說明理由;

2)若存在,使得對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為矩形的邊上一點,且,將沿折起到,使得.



1)證明:平面平面;

2)若,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點分別為線段,上的動點,且,則以下結(jié)論錯誤的是(

A.平面

B.平面平面

C.,使得平面

D.,使得平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)求函數(shù)的值域;

2)若不等式對任意恒成立,求實數(shù)的取值范圍;

3)證明:

查看答案和解析>>

同步練習冊答案